Tag Archives: London

King’s Cross and St. Pancras Railway Stations: Renaissance 1990 to 2025

In June 1990, The Railway Magazine issued a supplement entitled ‘King’s Cross Renaissance: The History, Development and Future of Two Great Stations’ by P. W. B. Semmens MA, CChem, FRSC, MBCS, MCIT.

Semmens introduces the supplement by highlighting first the 1846 ‘Royal Commission on Railway Termini Within or in the Immediate Vicinity of the Metropolis’ which recommended that “surface railways should remain towards the outskirts, and fixed a ring of roads around the city, beyond which they should not penetrate.” [1: p3]

The Midland Goods Sheds, Midland Road, St. Pancras & King’s Cross Passenger Stations as shown on the 25″ Ordnance Survey of 1914, published 1916. [2]
The same area as it appears on the modern ESRI satellite imagery in March 2025. [2]
Camden/St. Pancras/King’s Cross as shown on ESRI World Topography provided by the National Library of Scotland (NLS). [3]

The next few images show these buildings from the air. …

King’s Cross Railway Station in 1932, seen from the North on Britain From Above Image No. EPW039585 © Historic England. [4]
St. Pancras Railway Station in 1932, seen from the North on Britain From Above Image No. EPW039585 © Historic England. [4]
The Midland Railway Goods Station in 1932, seen from the North on Britain From Above Image No. EPW039585 © Historic England. [4]
St. Pancras Station, on the left, and King’s Cross Station on the right, seen from the South. [30]
The same goods sheds seen from the South in 1947. The ornate St. Pancras Midland Hotel intrudes onto this extract from EAW006467 in the bottom-right, © Historic England. [5]
St. Pancras Midland Hotel and Railway Station in 1947, an extract from EAW006467, © Historic England. [5]
King’s Cross Railway Station, seen from the South in 1947. This is also an extract from EAW006467, © Historic England. [5]

By 1990, the main line railway still barely penetrated the central core of London “and only Thameslink crossed the built up area to provide a through route.” [1: p3] The impact of the Royal Commission was most obvious “in the North of the city, where five of our main line termini … situated in a virtually straight line along one major road, stretching from Paddington in the West to the twin stations of St. Pancras and King’s Cross five miles away to the East.” [1: p3] As a result passengers heading into the centre of London still have to change to other forms of transport even if limited subsurface onwards extensions were provided by three of the termini.

In the latter half of the 20th century, developments in service industries and improved electronic communication systems have allowed companies, which originally needed to be closely situated in the centre of the city, to look for alternative, better locations. “The railway termini, with their built-in transport facilities for staff, thus provide excellent sites at which to build new offices, and BR [was] extensively involved in many such developments, after its initial office plans for the new Euston had been thwarted by the government of the day. Some of the London termini, however, are of such outstanding architectural merit that it is not acceptable for them to be swept away and replaced by office blocks on top of improved station facilities for trains and customers. Notable among these are St. Pancras and King’s Cross, both Grade I listed buildings, whose proximity to each other makes them unique in London. (Broad Street was never really a main-line terminus, as its services were virtually all of a suburban nature.)” [1: p3]

In addition, “Extensive goods activities were also developed by the railways close to many of their London main-line termini. This was particularly apparent in the vicinity of King’s Cross and St. Pancras, where there were vast areas devoted to the vital job of keeping the country’s capital provisioned, fuelled, and even ‘mucked out’, as arrangements had to be made for the removal of refuse by rail.” [1: p3]

The Great Northern Railway’s “Goods Yard complex, designed by Lewis Cubitt, was completed in 1852. The complex comprised the Granary Building, the Train Assembly Shed, and the Eastern and Western Transit Sheds. The buildings were aligned to the axis of the Copenhagen tunnel through which the trains arrived from the north. … The Granary building was mainly used to store Lincolnshire wheat for London’s bakers, while the sheds were used to transfer freight from or to the rail carts. Off-loading from the rail carriages was made easier by cranes and turntables powered by horses and, from the 1840s, hydraulic power. … Loaded and unloaded carts were moved into the Train Assembly Shed and formed into trains for departure northwards. Stables were located under the loading platforms – some of these remain in the Western Transit Shed. … In the 1860s, offices were added on either side of the Granary to provide more clerical workspace. Dumb waiters were used to transport papers up and down and windows between the offices and sheds allowed traffic to be monitored.” [6]

The midland Railway Somers Town Depot to the West of St. Pancras Railway Station. The British Library now sits on this site, © National Railway Museum and licenced for reuse under an Open Government Licence. [11]

The Midland Railway’s Somers Town Depot sat adjacent to St. Pancras Station on the West side of Midland Road. The next two images give an idea of the detailed brickwork used on the boundary walls of the depot.

Detail of the wrought iron railings and brickwork in the vast Somers Town Goods Yard walls. [12]

Somers Town Depot was an ambitious two-deck goods yard that differed from neighbouring King’s Cross to the east in that the tracks and platforms were raised. “This enabled the tracks to traverse above the Regents Canal to the north and arrive at their terminus before the Euston Road at that high level (conversely, the Great Northern Railway tracks to Kings Cross passenger station tunnelled underneath the canal and stayed low).  Beneath, loading bays were envisioned – a logistics hub for triage, trade and distribution on to the horse-drawn road network. With its own independent hydraulic system, 20ton loaded railway wagons could be dropped to the lower level on lifts for unloading.” [12]

The technical design was accompanied by carefully developed aesthetical design work in order to – to compliment Sir George Gilbert Scott’s passenger terminus next door. “A vast decorative screen wall would contain and secure the goods depot – necessarily tall to both encompass the raised sidings within, and the perimeter access roadway around them, but essentially horizontal in format – emphasising the soaring vertical spires of The Midland Grand Hotel beyond.” [12]

The screen wall was 3250 feet or about three-quarters of a mile in length, 30 feet high and nearly 3 feet thick and surrounded the whole site. It required “about 8,000,000 bricks of a peculiarly small size, rising only 11 inches in four courses, which greatly improved the appearance of the work. It [was] faced with Leicestershire red brick, the inner portion being entirely of Staffordshire blue bricks, set in cement, no lime having been used in this or any other work on the depot. …  The elevation on the Euston Road [was] tastefully ornamented with Mansfield stone, whilst the large arched openings, left in the wall to assist in lighting the roadway which runs around the enclosure, [were] protected by hammered iron screens, 11 feet by 8 feet, and weighing about 12 cwt. Each, of beautiful workmanship.” [12][13]

While the Midland [Railway] developed some of its goods facilities alongside the passenger station, the Great Northern [Railway] adopted a different strategy. Its corresponding activities were carried out to the north of King’s Cross terminus, in an area lying mainly to the west of the main lines, although some of them were actually situated above the tracks through Gas Works Tunnel. Much of this land [in 1990] is now derelict or only partially used, and the idea of making use of it has been carefully studied during recent years. The first intention was just to make better use of the area for housing, offices and leisure, but the upsurge in rail travel during the last few years, plus the building of the Channel Tunnel, has provided the incentive to include additional and better facilities for those who travel to and from the two main-line stations by train.” [1: p3]

A watercolour painting of the exterior of the Great Northern Railway Grain Warehouse at King’s Cross Goods Station, showing the canal basin on the South side, with low arches that enabled barges to enter the building, one of which has been cropped from the left side of the image. The warehouse was flanked by two large goods sheds. The building to the right is probably Maiden Lane Station, © Unknown, Public Domain, NRM. [1: p2]
The interior of one of the two goods sheds flanking the grain warehouse featured in the watercolour above. The sheds allowed the interchange of goods between road, rail and canal, © Unknown, Public Domain, NRM. [1: p2]
The same building in the 21st century. Coal Drops Yard (off the left of this photograph) and Granary Square are now the retail and dining heart of King’s Cross with global brands such as Paul Smith, COS and Tom Dixon and entrepreneurial ventures such as dried flower artist Roseur and authentic Japanese restaurant, Hiden Curry. It hosts an innovative, free programme of arts and culture. Residents, workers, students, shoppers and visitors all access and enjoy permanent art installations, temporary exhibits, live music and performances. In November 2021, King’s Cross became carbon neutral. Every building owned by The King’s Cross Central Limited Partnership was certified as a CarbonNeutral® Development by Natural Capital Partners under The CarbonNeutral Protocol, which was first developed and published in 2002 and is the leading global framework for carbon neutrality. [22]
Granary Square in the foreground and Coal Drps Yard behind (with theintriguing wave-form roof are the heart of the new King’s Cross. King’s Cross and St. Pancras stations are off the left side of this image. [30]

However, the major switch from rail to road transport in the  later half of the 20th century saw a steady decline in the need for such significant goods handling facilities. And as the end of the century approached these areas were repurposed to help regenerate inner city areas and improve transport infrastructure.

Writing in 1990, Semmens tells us that “A large proportion of the Midland’s goods activities used to be carried out in its Somers Town Depot, situated immediately to the west of the passenger station, on the other side of Midland Road. The need for this from the railway’s operational point of view ceased many years ago, and after the site had been cleared, it was used for the new British Library. After years of work, which started at a great depth below street level, the £450 million building is now well on the way to completion. It is expected to be fully in use by 1996, although the first public access to the new facilities will be three years earlier.” [1: p3]

The British Library was created on 1st July 1973 as a result of the British Library Act 1972. [7] Prior to this, the national library was part of the British Museum, which provided the bulk of the holdings of the new library, alongside smaller organisations which were folded in (such as the National Central Library,[13] the National Lending Library for Science and Technology and the British National Bibliography). [7]. In 1974 functions previously exercised by the Office for Scientific and Technical Information were taken over; in 1982 the India Office Library and Records and the HMSO Binderies became British Library responsibilities. In 1983, the Library absorbed the National Sound Archive, which holds many sound and video recordings, with over a million discs and thousands of tapes. [8]

For many years the British Library’s collections were dispersed in various buildings around central London, in places such as Bloomsbury (within the British Museum), Chancery Lane, Bayswater, and Holborn, with an interlibrary lending centre at Boston Spa, 2.5 miles (4 km) east of Wetherby in West Yorkshire (situated on Thorp Arch Trading Estate), and the newspaper library at Colindale, north-west London. [7][8]

The St Pancras building was officially opened by Her Majesty the Queen on 25th June 1998. [10]

Library stock began to be moved into the new building on 25th October 1997 By the end of 1997, the first of eleven new reading rooms had opened and the moving of stock was continuing. [8] The library continued to expand, from 1997 to 2009 the main collection was housed in the new building and the collection of British and overseas newspapers was housed at Colindale. In July 2008 the Library announced that it would be moving low-use items to a new storage facility in Boston Spa in Yorkshire and that it planned to close the newspaper library at Colindale, ahead of a later move to a similar facility on the same site. [9] From January 2009 to April 2012 over 200 km of material was moved to the Additional Storage Building and is now delivered to British Library Reading Rooms in London on request by a daily shuttle service. Construction work on the Additional Storage Building was completed in 2013 and the newspaper library at Colindale closed on 8th November 2013. The collection has now been split between the St Pancras and Boston Spa sites. The Library previously had a book storage depot in Woolwich, south-east London, which is no longer in use. [8]

But, in looking at the British Library in the 21st century, we are getting ahead of ourselves! …

1: Two Great Stations and their Goods and Locomotive facilities

A: King’s Cross Station to 1990

The earliest of the two stations was the Great Northern Railway’s King’s Cross. It was shared with the Midland Railway for 20 years while St. Pancras Station was being built. The building which appears on the aerial images near the head of this article was completed in 1852. It was preceded by a temporary GNR building situated between Copenhagen Tunnel and Gas Works Tunnel.

King’s Cross Railway Station in 1852 as it appeared in the Illustrated London News in 1852. [14]
The twin train sheds, seen from the Northeast. [15]
King’s Cross Railway Station Structure Plan 1852. [15]

Semmens tells us that “The 1852 station was a striking building, designed by Lewis Cubitt, with twin train-sheds linked at the South end by a brick façade. It was surmounted by a tower in Italianate style, complete with a clock, which had been on show at the Great Exhibition, and a bell. When built it was the largest station in Britain, and this moved certain shareholders to complain of extravagance. The building was, however, a fairly simple one, with only two platforms being provided originally, one for arrivals and the other for departures, set against the two outer walls. Between them were no fewer than 14 carriage roads, inter-connected by turntables and cross-tracks, as the four-wheeled vehicles of those days were small enough to be shunted like this, even by manpower, from one place to another within the confines of the station.” [1: p4]

Semmens continues: “Many changes took place during the station’s first half-century of operation, and its layout had altered considerably by 1905, when it featured in a series on signalling in The Railway Magazine.” [1: p4]

This diagram of King’s Cross station layout was provided in the March 1905 issue of The Railway Magazine. It shows the platform arrangements at that time as well as the signalling. The original double-track Gas Works Tunnel had by then been joined by two similar parallel bores, while there were connections on both sides of the ‘throat’ to the Inner Circle, complete with platforms for the through trains to and from the City. Although other additional platforms had been provided, many of them had been constructed outside the train-sheds. As the era of bogie coaches had begun by then, the turntables and cross-tracks had gone, but there were still four carriage sidings alongside the main departure platform (now No. 8). This feature was to continue into the days of the Grouping. Two of the arrival platforms (Nos 3 and 4) were only half-length ones, and this unusual arrangement did not disappear until 1934. [1: p4][16]

The Great Northern Railway opened its connection to the Inner Circle of the Metropolitan Line in 1863. In 1865, the York Road Platform was constructed to allow trains bound for the City to stop before heading into the tunnel which took them down to the Inner Circle. “Northbound trains were not provided with a similar platform on the down side until 1878, even though what was to become the semi-detached Suburban station had come into use three years earlier. The use of these curves at King’s Cross was considerably extended after 1866 when the Snow Hill connection was completed between Farringdon and Holborn Viaduct, as it became possible to run through trains from the Great Northern to destinations south of the Thames. Considerable amounts of freight were also worked this way, and the provision of a banker to help loose-coupled trains up the steep incline from Farringdon lasted until after nationalisation. The passenger trains, however, were withdrawn before the first world war, as travellers had opted to use the better connections then being provided by the Underground.” [1: p5]

Semmens notes that, “Gradients on Hotel Curve, as the line up from the Metropolitan was called, were as steep as I in 35, and the station stop at the top caused endless difficulties with the operation of these through services.” [1: p5]

He continues, “It will be seen from the 1905 diagram that at that time there was a small locomotive yard, complete with turntable, between the suburban and main-line stations. In 1923 this was moved to its better-known position on the west side of the lines where they entered Gas Works Tunnel. The railway had purchased some of the land formerly used by this utility, and installed a 70ft turntable there to cope with the new Pacifics which were starting to emerge from Doncaster. Although the main locomotive activities at King’s Cross were centred on Top Shed, situated further to the north in the middle of the Goods Yard, there were obvious advantages in providing facilities closer at hand for turning and refuelling incoming locomo-tives before they took up their return workings. The end of the main departure platform (for many years No. 10, but now No.8) provided generations of enthusiasts with a grandstand view of these activities, which continued through the diesel era until the East Coast workings became monopolised by the HSTs.” [1: p5-6]

As well as a cramped layout and the proximity of the tunnels to the station throat, there were two overbridges. One served the Gas Works and was removed in 1912, the other was removed in 1921 when an alternative access route, ‘Goods Way’ was built South of Regents Canal over the mouth of the tunnels. Sightlines from the signal cabins were poor. As a result rudimentary  track circuits were installed as early as 1894. [1: p6]

Semmens reported in 1990 that, “Since 1905 there [had] been three major changes in the signalling for the King’s Cross area. The first took place just before the Grouping, when a number of three-position upper-quadrant semaphores were installed, with roller-blind route indicators. In 1932 there was a much bigger change in the station area, with colour lights replacing the semaphores, and the points being worked electrically. The distinctive roller-blind route indicators were to remain until 1977, which saw the commissioning of the modern power box, situated on the up side immediately south of Gas Works Tunnel, While the previous all-electric box had just controlled the approach lines and those in the station itself, the present panel interface[d] with the Peterborough one at Sandy, 44 miles away. For good measure it also control[ed] the Hitchin-Cambridge line as far as Royston. … This latest change was part of two major developments on the East Coast Main Line in the 1970s, the Great Northern suburban electrification and the introduction of the Intercity 125s. The first of these resulted in an appreciable reduction of movements in the terminus, as the inner suburban services, worked by the dual-voltage class 313 units, were mainly diverted from Finsbury Park to Moorgate through the large-bore tunnels which were built in 1904 as the Great Northern & City Railway. From this there is now an excellent cross-platform interchange at Highbury & Islington with London Transport’s Victoria Line, giving frequent connections to and from King’s Cross Underground. They supplement those at Finsbury Park off the outer-area EMUs operating from King’s Cross suburban station, which has recently had a fourth platform added. Under the refurbished roofs of the train-sheds there [was] a straight-forward eight-platform layout for main-line trains, but the connections to the Inner Circle [were] severed, as the new inner-suburban trains now reach[ed] the City directly from Finsbury Park.” [1: p7]

Semmens also comments: “As part of this electrification scheme, the old freight flyover north of Copenhagen Tunnel was rebuilt to take passenger trains, and rails were removed from the most easterly bores of Gas Works and Copenhagen Tunnels. All this resulted in a much simpler layout at King’s Cross, and it was possible to improve the speed restrictions, which increased the station’s capacity, as well as reducing journey times. The 25 kV overhead catenary was put up [and] provide[d] power for the electric Intercity services which [were] already running as far as Leeds and York, and [would] be extended to Edinburgh and Glasgow in May 1991. … At the opposite end of the station, a considerable improvement in the passenger amenities was introduced in the early 1970s. When King’s Cross was built, the south end of the train sheds lay alongside St. Pancras Old Road, but the changes that followed the building of the Midland station produced a triangle of spare land between the station and Euston Road. Over the years this became cluttered with an assortment of completely uncoordinated buildings, known as the ‘Indian Village’. In 1973 the last of these was swept away, and the present [in 1990] single-storey concourse built in their place. It include[d] the BR ticket office and travel centre, which had previously been situated, somewhat inconveniently, halfway along No. 8 Platform. The new concourse also provide[d] other amenities, but even the vastly increased space often [became] crowded as a result from f the greater numbers [by 1990, travelling] on the frequent Intercity services.” [1: p8]

Finally in respect of King’s Cross station, Semmens notes that planning permission for the single story concourse was only granted on a temporary basis and was due to expire in 1996.

B: St. Pancras Station to 1990

At first, the Midland Railway reached London over the Great Northern Railway’s tracks from Hitchin. “Its services by this route began in 1858, but the minimal facilities at King’s Cross made it difficult to accommodate the increasing number of trains being operated by the two companies. Not surprisingly, the Great Northern gave its own trains priority, and the Midland became increasingly frustrated, with no fewer than 3,400 of its services being delayed in 1862 when the Great International Exhibition at South Kensington attracted a lot of special workings. Many of the trains off the Midland were made to use King’s Cross goods yard, and then, in the middle of the summer, the [Great Northern] moved some of the Midland’s wagons out of the way after the latter had been slow to commission their own coal yard. As a result the Midland decided it had had enough, and there was nothing for it but to build its own extension from Bedford into London.” [1: p9]

In the few years that had elapsed since the Great Northern had built its line into King’s Cross urban sprawl had magnified,  and the Midland was presented with the immense task of finding a route for its own tracks. “To accommodate its proposed facilities, the Midland was able to buy a large area of land from Lord Somers on the north side of Euston Road, and a suitable reorganisation of the roads in the area could be made to accommodate its new terminus close to King’s Cross. The company was actually able to site it right on the other side of the new Pancras Road, with only the Great Northern Hotel in between.” [1: p9]

The Midland coped with the barrier presented by the Regent’s Canal by crossing it at high level and maintaining that high level through to the station buffers. This created space under the platforms to store goods brought to London by the railway. Semmens says that “there was one commodity … which had its own special containers, and these formed the new unit of measurement which was adopted for this part of the station. The platforms and tracks were thus supported on a two-dimensional grid of columns, sited 29ft 4in apart, which was chosen because it maximised the storage capacity for barrels of Burton beer.” [1: p9]

To get the beer into the cellars, beer-laden wagons were pulled into the station, then reversed onto a hydraulic lift just outside the trainshed that took them down. Below, two railway lines ran the length of the stores and there were three wagon turntables, so that wagons could be manoeuvred throughout.” [17]

St. Pancras has had a long and close relationship with the brewing industry and beer consumption in London. Throughout the nineteenth and first half of the twentieth century, beer came from all over the country, and particularly from Burton-on-Trent, to supply thirsty Londoners. A major arrival point was St Pancras where beer was stored in a massive warehouse and in the vaults under the passenger station.” [17]

Burton’s high-quality attractive pale ales – a contrast to the darker porter beers drunk in London – were well-renowned in the 1820s and 1830s, but getting them to London was very costly and could take three weeks. The railway’s arrival in Burton in 1839 changed that and soon Burton brewers opened rail-supplied agencies nationwide and their trade expanded rapidly. Bass, a major Burton brewer, output rose from just over 30,800 barrels in 1839 to 850,000 in 1879, its biggest market being London where its beers grew in popularity.” [17]

Before the late 1860s, Burton brewers supplied London by sending their beer via the Midland Railway’s competitors. However, when the Midland planned its main line to London in the early 1860s, Bass agreed to send all their beer with the company as a far as possible, for a fixed price. In return the Midland would provide “Ale Stores and Offices sufficient for the business” at St Pancras. The railway built a dedicated warehouse adjacent to the Regent’s Canal which was connected to St Pancras’s northern goods yard.  This held 120,000 barrels and employed 120 men. Bass subsequently became the world’s largest railway customer, and in 1874 it sent 292,300 barrels of beer to London, 36% of its total output.” [17]

The beer lift adjacent to the signal box. This was a hydraulic lift that lowered beer-laden wagons into the undercroft, from where barrels were distributed across London. The long.term users of the undercroft were Thomas Salt & Co. and the Burton Brewery Co. This photograph, taken facin North, was shared by Dr. David Turner on Facebook on 11th June 2021, © Public Domain, a copy is held at Camden Local Studies and Archives Centre. [18]
A construction drawing of St. Pancras Station which illustrated the height of the trainshed and shows the undercroft. Semmens comments that the design of the roof was dictated by the need to avoid a significantly can’t supporting structure cutting the under croft in half. He notes that the three-inch tie rods for the arched roof run through the floor. The platforms and tracks being carried by girders which spanned the gaps between the 720 columns in the undercroft. This, he suggests, would be of great value lin the design of any regeneration work. [1: p10][19]
An engraving showing the construction of St. Pancras Station. The undercroft is featured prominently, © NRM/ SSPL. [20]
St. Pancras Railway Station in the 1950. The upper drawing shows the undercroft level, the lower the platform arrangement at the time [1: p12]

Network Rail says that, “In 1865, a competition was held to design the front façade of the station including a new hotel. George Gilbert Scott, the most celebrated gothic architect of his day, won the competition even though his design was larger than the rules allowed. Construction of the hotel started in 1868 however the economic downturn of the late 1860s meant that the hotel, named the Midland Grand, was only completed in 1876. Striking and self confident, the station and hotel completely dominated its Great Northern neighbours.” [19]

The location chosen for the station was known as Agar Town. It was an area of slum dwellings. The powers-that-be saw an opportunity to clear the area. Semmens tells us that, “several thousand homes of one sort or another were demolished, which resulted in the eviction of an estimated 10,000 people, while hundreds of cats took to the wild, marking out their own new territories in the railway works. There were still more complications, as the Fleet River ran through the site by then little more than a sewer, so it was enclosed in a pipe-while corpses had to be cleared from part of the burial ground for the old St. Pancras church. Another church, St. Luke’s King’s Cross, had to be demolished, and a replacement was built at the Midland’s expense in Kentish Town. Provision was also made for a connection to the Metropolitan Railway, to permit through services to the city. This diverges from the eastern side of the main lines at Dock Junction (originally St Paul’s Junction), nearly three-quarters of a mile from the buffer-stops. It then swings to the west before passing diagonally beneath the terminus on its way to join the Metropolitan at Midland Junction, roughly in line with the end of King’s Cross.” [1: p9]

It is difficult to imagine the upheaval caused to many of the poorest residents of London by the clearance of the slums.

When it was built, St. Pancras Station had “five platforms with a further six carriage roads, which put it ahead of what King’s Cross had at the time. In 1892 the layout was modified when some of the carriage roads were replaced by two more full-length platforms, making the total up to eight, plus the shorter one on the down side. Further changes took place in the early years of nationalisation, and from 1968 there were just six full-length ones, plus the bay.” [1: p10]

The track diagram for St. Pancras in 1905, published in The Railway Magazine, November 1905. [1: p11][21]
Details of the signal gantry at the station throat, published in The Railway Magazine, November 1905. [1: p11][21]

In 1923 St Pancras was transferred to the management of the London Midland & Scottish Railway; the LMS focused its activities on Euston, and so began the decline of St Pancras over the next 60 years. In 1935 the Midland Grand was closed as a hotel due to falling bookings and profit, blamed on the lack of en suite facilities in the bedrooms. It was used instead as office accommodation for railway staff and renamed St Pancras Chambers.” [19]

During WWII, the station played an important role for troops departing for war and children being evacuated from London. Although the station was hit hard during the blitz, there was only superficial damage and the station was quickly up and running. [19]

Throughout the 1950s and 1960s, BR allowed the condition of St. Pancras Station to deteriorate and then sought to close and demolish it. “John Betjeman spearheaded a campaign to save the station and hotel, and in November 1967 was successful in getting the buildings declared Grade 1 listed just days before demolition was due to begin.” [19]

Although the buildings were saved, their decline was allowed to continue; the hotel building was mothballed in 1985 and the train shed roof fell into a state of serious disrepair. [19]

Semmens tells us that, “Under the BR Modernisation Plan, diesels took over the main-line and suburban services out of St. Pancras. For many years the former were in the hands of the ‘Peaks (class 45s), hauling rakes of air-conditioned Mark II coaches, but in the autumn of 1982 the first Intercity 125s were drafted to the line. This was slightly earlier than had been envisaged in the original BR plans of 1973, but those arrangements had been based on the Bristol and South Wales sets being cascaded to the Midland after the arrival of APTs on the Western. After the protracted development of the light-weight tilting trains, the position changed, and there were no plans for HSTs on the Midland, but this altered as BR sought to maximise the revenue from its high-speed diesels.” [1: p10]

Writing in 1990, he continues:  “Since 1982 the number of these units deployed on the Midland main line has increased, the latest unit having been drafted in after the arrival of the first Intercity 225 set for the ‘Yorkshire Pullman’ on the East Coast Route in October last year. It is of interest that the Eastern Region provides the HST sets for the Midland main line, some from Bounds Green and the others from Neville Hill.” [1: p10]

For the suburban services out of St. Pancras a special type of diesel multiple-unit was provided. These four-car seats, later to become Class 127, were introduced in 1959, and had Rolls-Royce engines with hydraulic torque converters. They improved the frequency of services on the line, as well as the overall speeds, but by the end of their working lives they had become rather unreliable. They had to continue in passenger operation somewhat longer than intended, because the introduction of their electric successors was held up by the protracted dispute over Driver-Only Operation. The new Class 317 EMUs finally went into service in the summer of 1983, the overhead wires having already been installed into St. Pancras for some considerable time.” [1: p11]

These new EMUs lasted only 5 years in service before being replaced by Class 319 units which were able to operateboth from the 25kV North of St. Pancras and the Southern region’s third rail, to offer a cross-river Thameslink service which was inaugrated by Princess Anne in May 1988. The Thameslink service led to the majority of trains from the North not entering St. Pancras Station. St. Pancras lost most of its suburban services, and by 1990, was primarily an Intercity station. Semmens notes that under the regeneration proposals current in 1990, that role would partly reverse again. [1: p11]

C: Goods & Locomotive Facilites

Semmens notes in 1990 that much of the planned regeneration would be concerned with “the future use of the land that was once occupied by former goods yards and locomotive sheds.” [1: p12] We have already noted these facilities:

  • The Somer Town Goods Station of the Midland Railway and its facilities further to the North would not be part of planned regeneration work as they were set aside for the British Library development which we have highlighted above.
  • The one-time Great Northern Goods Yard – would become the core of planned regenertion activites – an 85-acre “area situated between the Great Northern and Midland main lines, … bounded on the North by the electrified North London Line and by Regent’s Canal on the South.” [1: p12]
  • King’s Cross Top Shed – sat in a small area at the heart of the Great Northern Railway’s goods facilities. It closed in June 1963.

Semmens goes on to describe the area: “potato market occupied much of the east and south-east sides of the yard. It consisted of 40 covered ‘runs’, set at right angles to the main sidings, and each of them could accommodate three or four wagons while they were unloaded by the various merchants. Standage elsewhere in the yards would be required for up to 400 additional loaded wagons awaiting their turn to be shunted into place, and each of these movements would require the use of capstan and turntables, in addition to the yard pilot. Lying to the west of this area were the dispatch roads where wagons and vans could be positioned under cover while being loaded by traders. One of the tracks led down a steep incline to the underground area, which was used for ‘vulnerable’ traffic. Nearby was a building known as the Midland Shed, being. a relic from the time between 1858 and 1867 when that company’s trains reached London over the Great Northern from Hitchin. More tracks served the one-time Grain Warehouse, although it had lost its canal connections” [1: p12] which are shown in the NRM images above.

Semmens continues his description: “Continuing clockwise, the coal area was reached, which had two lines of drops inside the confines of the yard. From one of these, a pair of tracks crossed Regent’s Canal to serve Camley Street Coal Yard, where over 200 wagons could be positioned for unloading using the electric transporter. Earlier still, when the gas works alongside King’s Cross passenger station was operating, that had its own connection across the canal for the delivery of coal straight into the retort-house. Along much of the western boundary of the yard, after the canal has passed under the Midland [Railway], the property of the two railway companies came [1: p12] together. The tracks in the King’s Cross yards finished at right-angles to the lines out of St. Pancras, and were separated only by a wall and the width of the perimeter road. It was here in 1980 that the NRM’s replica of Rocket was transferred from road to rail when it worked the last steam train into St. Pancras, to publicise the Post Office’s commemorative stamps that year.” [1: p12-13]

Between Top Shed and the North London Line were more sidings, some of which were under cover and handled Sundries, while bricks from the numerous works at Fletton, alongside the East Coast Route near Peterborough, were dealt with in the open. Hereabouts too was the smelly part of the yards, where manure from the railway’s own cartage stables was loaded for dispatch, in addition to some of London’s refuse. Even in 1965 some 40 wagons a day of rubbish from the Chapel and Hoxton Markets were being moved from here to Holwell Sidings on the branch from Hatfield to St. Albans.” [1: p13]

Semmens appears to have the wrong location for Holwell Sidings. Rather than being on the Hatfield to St. Alban’s, they were, in fact in Leicestershire. [50]

Additionally, a single-track line climbed steeply from these yards “to a dead-end parallel to Copenhagen Tunnel, from where there was a trailing connection across all the tunnels to serve the Caledonian Road goods yard away to the east.” [1: p14] While this short branch was still in use in 1965, another facility, which disappeared much earlier, was Cemetery Station, “the remains of which could be seen until the mid-1950s. Like the better-known facilities at Waterloo, this formed the starting point for funeral trains. Those in North London used to run to the graveyard on the east side of the East Coast Main Line, just north of New Southgate, the junction there being controlled by Cemetery Signalbox, now demolished. The final traces of the station opposite King’s Cross Goods Yard were swept away during the construction work that went on here for the Victoria Line.” [1: p14]

In 1965, King’s Cross Goods Yard still employed more than 1,000 men. The main terminal close in 1974 and by 1990 much of the yard’s activities had ceased. Semmens noted in 1990 that, “Freightliners ha[d] come and gone, but three separate aggregate/concrete facilities still operate[d] in the area to the north of the Top Shed. They [were] served by regular Railfreight workings, usually hauled by a pair of class 31s. There [were] also sufficient other operations to justify the presence of an unofficial caravan close to the Grain Warehouse providing food and drinks for those who work[ed] in the area. The various listed buildings and structures remain[ed], but many of the others ha[d] deteriorated since closure.” [1: p14]

2: Regeneration: First Thoughts

Back in Victorian times St. Pancras Station was built alongside King’s Cross because of the commercial competition between two different railway companies. This position was not changed by the Grouping, as, in 1923, their ownership passed to the LMS and LNER respectively, which were still rivals, particularly for the Anglo-Scottish business. Semmens notes that in 1990, the two stations were still operated by two different regions, but their common ownership during since 1948 had nevertheless provided opportunities for rationalisation and cooperation. [1: p15]

In 1966, the year after Lord Beeching had returned to ICI, proposals for combining King’s Cross and St. Pancras were first aired, with the latter being closed. Its suburban services would have worked through the tunnels to the City, while the main-line trains were to have been diverted into King’s Cross, where one scheme envisaged a heliport on the roof. A two-storey concourse building was to have been constructed across the front of King’s Cross, while a new 300ft tower to the north-west of the station would have become the new BR headquarters. The St. Pancras hotel would have been demolished and replaced with a new office block.” [1: p16]

These early plans were stymied when St. Pancras Station and the Hotel were ‘listed’ in 1967. Suggestions that it should be a sports centre or a transport museum with trains diverted elsewhere, came to nothing in 1968 when rationalisation of railway facilities was abadoned.

Semmens says that, “a decade and a half later, other, much more friendly, proposals were to materialise for the two stations, which would enable them to become the nucleus for the regeneration of the whole area. … It was in the latter half of the 1980s that British Rail offered potential developers the opportunity to submit ideas on how to revitalise the whole 130 acres of their land around King’s Cross. … The developer’s brief was the regeneration of the land North of the two stations, which was to be fully co-ordinated with new station facilities and railway works. In particular, provision was to be made for a sub-surface station below the existing platforms at King’s Cross, which would ultimately benefit the Thameslink services due to be inaugurated in May 1988.” [1: p17]

Two consortia were invited by British Railways to submit plans which the public could study at an exhibition held in the St. Pancras Undercroft at the beginning of 1988. They were:

1. Speyhawk, working in conjunction with Sir Robert McAlpine & Sons (Speyhawk/McAlpine).

2. London Regeneration Consortium (LRC), working with two separate groups of architects, Foster Associates, and Skidmore, Owings & Merrill.

Semmens notes that “although only open for a relatively short time, the exhibition drew the public’s attention to the plans, and created considerable interest in architectural circles. In addition to the displays, which included models of the main proposals, both consortia produced some effective printed material which enables us to recall what was being planned at this stage of the project.” [1: p17]

Semmens says that “the individual styles of the two Victorian stations made it difficult to link them together architecturally, and three very different proposals for the new concourse resulted, as shown in the illustrations. Speyhawk/McAlpine, who were already involved with BR in the redevelopment of the hotel at St. Pancras, went for a ‘solid’ design. with a classical, stone-built, rotunda serving as the main public entrance. On the other hand, the LRC’s two architectural partners both came up with proposals that included much more glass in their construction. Foster Associates proposed a huge glazed vault, filling the whole gap between the two stations, while Skidmore, Owings & Merrill’s plans were for a much smaller, fan-shaped, structure with an unusual roof profile.” [1: p17]

These were only outline schemes, but suggested very different ways in which the area around and to the North of the two stations could be developed. “All three schemes involved covering in the railway tracks out of King’s Cross, between the twin train-sheds and Gas Works Tunnel, which would have meant that trains would have first emerged into daylight at the north end of this tunnel. Speyhawk/McAlpine also proposed building over the Midland’s tracks for some distance alongside Pancras Road, and included a monorail link from their proposed concourse to a new Maiden Lane station on the North London Line.” [1: p17]

The proposals submitted by the London Regeneration Consortium were preferred by British Rail, and they became the designated developers. However, the brief that they began working to was altered significantly as the 1980s gave way to the 1990s because of a significant “upsurge in railway travel … sweeping across Europe in response to modern attitudes to mobility and the environment. In particular the significance of the Channel Tunnel began to be perceived, and the need for a second London terminal/interchange to serve those parts of the country north of the Thames emerged.” [1: p17]

A view of the 1988 proposals by the London Regeneration Consortium/Skidmore, Owings & Merrill for the redevelopment area, showing their fan-shaped concourse © London Regeneration Consortium/Skidmore, Owings & Merrill. [1: p15]
Two different schemes: the first image is an impression of the Euston Road frontage of the 1988 concourse proposed by Foster Associates for the London Regeneration Consortium © London Regeneration Consortium/Foster Associates; the second is a proposal from Speyhawk/McAlpine in 1988 for the new concourse between King’s Cross and St. Pancras stations, © Speyhawk/Sir Robert McAlpine & Sons. [1: p16]
The Speyhawk/McAlpine 1988 master plan for the redevelopment area, © Speyhawk/Sir Robert McAlpine & Sons. [1:p16]

Semmens supplement to The Railway Magazine was effectively a position statement, outlining the state of play at the beginning of the 1990s. New proposals were before Parliament, designed to enhance the railway facilities of the UK considerably, in addition to creating a whole new urban area out of the wastelands of the former goods yard at King’s Cross. [1: p17] That redevelopment was given greater significance by the need to accommodate the Channel Tunnel Rail Link (HS1), which would bring high-speed rail services to London. [31]

In 1990, the UK Parliament considered and approved the British Rail development plans, including the merging of the stations and the creation of a new low-level station. [32] The Select Committee drew attention to the financial links between the proposed office and commercial developments on the railway lands behind King’s Cross and St. Pancras stations and the proposal for the new station to go ahead. [33]

In 1991, 1992 and 1993, the King’s Cross Railways Bill was debated in the House of Commons and the House of Lords [34] but development did not take place at that time. In 1996, the decision was taken to locate the HS1 terminal at St. Pancras (a change from the original intention for it to be at Waterloo Station).

3: The Scheme Current in 1990

Semmens tells us that in November 1988, the British Railways Board and London Underground Limited lodged their private ‘King’s Cross Railways’ Bill with Parliament, seeking authority “to construct works and to purchase or use land at King’s Cross in the London boroughs of Camden and Islington; to confer further powers on the Board and the Company; and for other and related purposes”. While this may sound quite modest, its passing will set in operation the second most important railway project in Britain this century, and encourage urban redevelopment of 134 acres, worth some £3 billion, as well as providing 1,800 new homes and creating the potential for up to 30,000 jobs. Remarkably little detail of how this will be achieved emerges from the four parts, 31 sections and five schedules of the Bill itself, but this was supplemented by 35 days of evidence presented by BR to the MPs considering it at the start of its committee stage.” [1: p17]

King’s Cross, St. Pancras, Thameslink and the London Underground interchange connected with these stations are currently used by some 270,000 passengers every weekday. Many of these travel by the BR Intercity services using both the main line stations, with Anglo-Scottish trains arriving and departing every half hour for considerable periods of the day. The popularity of the East Coast Route … increase[d] still further with the travelling public after the full electric services [came] into operation in May 1991, when many of the trains [began to] run through to Glasgow.” [1: p17-18]

Long-distance passengers were “supplemented by those using the Network SouthEast suburban trains, including the Thameslink services running right across the heart of London. From King’s Cross Underground it is possible to travel to more than 60 per cent of the Underground stations without changing trains, and all the other BR main-line termini can be reached direct, except Waterloo, which requires one change. All five London airports [were soon to] be within one hour’s journey by train from King’s Cross, either direct or with easy changes, and the rail link right into Stansted [was due to] begin operations in March 1991. … The King’s Cross area [also] serve[d] as a significant bus interchange.” [1: p18] Towards the end of the 1980s, there had been a steady increase in the number of passengers using all these services.

In 1993, “the biggest step-change in British and European-transport history [was due to] take place when the Channel Tunnel open[ed] that June, following on the heels of the start of the Single European Market six months earlier. When first thoughts were being given to the King’s Cross regeneration project, predictions about the impact of both these factors suggested that provision should be made eventually for additional facilities to be developed at King’s Cross. The need for them was not expected to arise, however, until into the 21st Century. The position was changing rapidly, though, and in July 1988, British Rail published its report on the long-term route and terminal capacity for its Channel Tunnel train services. which indicated that both could become congested appreciably before the year 2000.” [1: p18]

This radically changed the emphasis on the ideas for the new railway facilities required at King’s Cross, which became the obvious location for the second terminal for the through trains to Europe. Unlike the first terminal, to be opened at Waterloo in 1993, it would provide direct interchange with domestic Intercity trains serving the whole of the northern half of Britain … and could also be made to facilitate the workings of the through trains to and from the Continent. Any such scheme for a new major set of platforms would be extremely expensive, but an additional advantage of the King’s Cross site is that the regeneration possibilities could provide welcome finance.” [1: p18]

This diagram shows the changes to the railway connections envisaged as part of the King’s Cross proposals current in 1990. ][1: p17]
A plan of the land affected by the King’s Cross proposals of 1988/1990. [1: p18]

The … proposals … included in the 1988 Bill, provide[d] for eight new sub-surface platforms, set diagonally below the main station at King’s Cross, four of which would be for the Channel Tunnel services. To reach these from the north, a new connection [would be] required, swinging westwards in a wide curve from Belle Isle, at the south end of Copenhagen Tunnel, as it descends. Just north of the point at which it passes under Regent’s Canal, it is joined by a connection off the Midland main line, so trains from both routes can use the new platforms. At present the sharp curves through the tunnel under St. Pancras impose major restrictions on the type of rolling stock that can use the Thameslink route, and the new arrangements will remove these.” [1: p18]

In addition, “this curve [would] enable Thameslink services off the Great Northern suburban lines which [could not then be operated]. Even if the York Road and Hotel Curves were to be reopened at King’s Cross, the tight clearances caused by the tunnels and curvature would necessitate the provision of even smaller rolling stock than the [then] present class 319s. BR also ha[d] a Bill going through Parliament for the construction of a new chord at West Hampstead, which [would] provide a connection between the lines out of St. Pancras and the West Coast Route, enabling Thameslink services to be extended that way too if required. The through Channel Tunnel trains serving the northern part of Britain [would] also be able to use these links to reach the East and West Coast Main Lines. At the south-east end of the new King’s Cross sub-surface station, the platform roads [would]. converge into the two tracks which form the present Thameslink route.” [1: p18]

Realignment work then underway in “the Ludgate Hill area [would] remove the existing clearance restrictions at that end of the link, and only minimal widening work [would be] necessary between King’s Cross and Farringdon to enable the passage of the largest coaches on BR. The present King’s Cross (Thameslink) station [would] disappear, and passengers using it [would] also benefit from the change. The main entrance to this [was] situated a considerable distance away along Pentonville Road, and require[d] a long walk to reach it, either through underground passageways or across busy roads. Although the passenger facilities there [had been] recently improved, the platforms [were] short and comparatively narrow, and there  [was] no room for them to be extended in any direction. A sub-surface ticket hall for the new Thameslink platforms [would] be built on the corner of York Way and Pentonville Road, beneath the Bravington block of shops, right opposite the south-east corner of the main station at King’s Cross.” [1: p19]

Commuter traffic on the Great Northern lines [was] also expected to continue to grow. The [then] present suburban platforms [would] not accommodate 12-coach trains, and already in peak periods outer suburban sets [could] be found competing with Intercity trains for platform space in the main station. To deal with this problem, it [was] planned to switch all the Network SouthEast trains into St. Pancras by a new surface connection which [would] run across King’s Cross Goods Yard, and join the Midland’s tracks just behind the site of Top Shed. To accommodate these extra workings in St. Pancras, the number of platforms [would] be increased to ten, a task that [would be] comparatively straightforward, thanks to the method of construction adopted back in the 1860s. Bridge No. 1, immediately outside the station, [would] have to be widened, and as this [was] situated over what amounts to a six-road intersection, it [would] involve some clever engineering.” [1: p19]

The existing platforms at King’s Cross would need to be lengthened to accommodate the longer East Coast Route trains needed to meet demand. At King’s Cross, as at St. Pancras the station layout would need improvement to allow higher arrival and departure speeds to be achieved. Track would need to be relaid through Copenhagen and Gas Works tunnels.

New platforms and tracks are of little use unless better facilities are also provided for the passengers, and considerable thought [had] been given to this aspect of the proposals as well. The idea for the new concourse beside King’s Cross Station [had] been developed, and a new design for it [had] been produced by Richard Paul of Norman Foster Associates. Like the earlier London Regeneration Consortium proposals, it [would] be clad in glass, and the triangular roof, covering 8,300 square metres, [would] be supported by just nine columns, all except one of them situated along the walls. People entering the station from the street [would] approach the concourse down a wide semi-circular ramp from the south-east. Escalators [would] connect with the improved interchange arrangements for the London Underground’s five lines, which [would] be constructed to take into account the long-term recommendations of the Fennell Report on the 1987 escalator fire. Passengers arriving by car or taxi [would] use a special area to the north of the new concourse, … equipped to deal with the different types of flow involved.” [1: p19]

An artist’s impression of the interior of the new concourse, © British Rail. [1: p19]

Great care had been taken to ensure that the concourse was user-friendly; due allowance being made for ‘meeters and greeters’ and the dwell-times that will result. As shown in one of the illustrations, the ticket office and travel centre would be set across the wide north end, “with the main catering facilities at mezzanine level above them. The usual forecourt retailing activities [would] be located along the walls, and kept low so that views of the two main station buildings through the glass walls [were] not obscured. The floor of the concourse [would] be below street level, to facilitate the connections required to the various platforms.” [1: p20]

Diagram showing the improved interchange facilities being planned at King’s Cross, © British Rail. [1: p17]
An illustration of a model showing the positions of the existing and future stations, © British Rail. [1: p19]

Four of the new sub-surface platforms [would] be dedicated for use by the international services to and from the Continent, and they [would] have their own inward and outward Customs and immigration facilities, although these activities [were expected to] take place on the trains in the case of the through services between the Continent and the northern parts of the country. When the Channel Tunnel open[ed] in June 1993, the schedule from Edinburgh to Paris [was expected to] be approximately eight hours. To reach the West London Line through Olympia, these services [would] use either the ‘King’s Cross Link’ with the North London Line … or the Harringay curve. After the new low-level station [had] been completed at King’s Cross, which would be in 1996 at the earliest, half an hour would be cut from the timings of all the through international trains using the East Coast Route.” [1: p20]

The international trains would then still be using the existing lines through Kent, but the completion of the European Rail Link, after 1998, [would] enable an additional 30-minute cut in timings to be made, to the great advantage of the millions of international passengers who [would] use the route each year thereafter. Its opening [would] bring Edinburgh within seven hours of Paris, and 6 hours from Brussels, the former being only an hour longer than the ‘Coronation’s’ London-Edinburgh timing, which was the fastest ever scheduled in the days of steam. From 1996, it [was] expected that there [would] be one international train an hour in each direction from Waterloo and the same number from King’s Cross, but this represents only about a quarter of the long-term capacity of both terminals. From King’s Cross, St. Pancras and Euston stations up to ten Intercity trains an hour [in 1990 departed] for the Midlands, Northern England and Scotland.” [1: p20]

The completion of the Channel Tunnel Rail Link [would] signal the start of the high-speed domestic services from King’s Cross to the towns and cities in Kent. With the eight-coach Class 342 ‘Kent Express’ units running at up to 125 mph, the journey to Dover could take as little as 60 minutes. … Cross-London Intercity trains [might also run] this way, although they might presumably have [had] to be hauled by dual-voltage electric locomotives, as it is unlikely that the diesel fumes from the shortened Cross-country HSTs would be welcome in King’s Cross Low Level.”

Provisions were made within the Bill for the purchase of land outside British Rail’s ownership. Some temporary road diversions  were envisaged as was the need to remove and later replace the listed lock-keeper’s cottage alongside the canal. A ‘listed’ gas-holder would need to be dismantled and rebuilt. A nature reserve would need to be removed and replaced by a larger one. semmens noted that only 29 homes would be demolished and the development would provide 1800 new dwellings. He noted too that a period on at least 20 years would be likely to relapse from the Act receiving Royal Assent before the scheme would be completed.

An artist’s impression of the King’s Cross area after completion of the project. King’s Cross and St. Pancras stations are in the foreground, with the new concourse between them. The old grain warehouse was to be retained and can be seen at the centre of the image. Semmens says that, “It is particularly interesting to see how much of the area at present occupied by the underused King’s Cross Goods yard is due to become a park, and the narrow waterway of Regent’s Canal will be expanded to provide a new setting for the Grain Warehouse and the other listed buildings in that immediate area. The contrast to the [1990] scene [would] be every bit as great as the impact of the new railway facilities [would] be on the millions who use King’s Cross and St. Pancras every year,” © British Rail. [1: p21]

British Rail was given the green light by MPs to carry out a multi-million pound redevelopment of King’s Cross and St Pancras stations and as the 1990s unfolded, the UK Government established the King’s Cross Partnership to fund regeneration projects in the area. London and Continental Railways (LCR) was formed to construct the railway and received ownership of land at King’s Cross and St Pancras stations in 1996. After the millennium, work on High Speed 1 (HS1) began, providing a major impetus for other projects in the area.

4: St. Pancras Midland Grand Hotel

St. Pancras Renaissance Hotel in the 21st century. [35]

Before going on to consider developments after Semmens was writing in 1990, it would be good to hear what Semmens had to say about the hotel which fronts Barlow’s trainshed. Designed by  Gilbert Scott, the hotel was no more than a series of foundations when the station opened in 1868. Five years would elapse before the building was complete.

The Midland Railway over stretched its finances in building its extension into London. It downsized the design of the hotel, removing an eighth floor which would have housed the headquarters of the railway company after an intended move from Derby. The project programme was allowed to drift to aid the company’s cashflow. Semmens describes the hotel as “the finest example of non-religious Victorian Gothic in Britain, … much of the detail was adapted from the architect’s plans for offices in Whitehall which never materialised.” [1: p22]

Construction of the Midland Grand Hotel took place between 1868 and 1876 and was completed in various stages with the East Wing opening on 5th May 1873 and the rest followed in Spring 1876. Altogether, the hotel fabric had cost £304,335, decoration and fittings £49,000 furnishings £84,000, adding up to a not-inconsiderable £437,335. [37]

The completed building had used 60 million bricks and 9,000 tons of ironwork including polished columns of fourteen different British granites and limestones.

Midland Grand Hotel Advertisement of 1885, Public Domain [36]
The Midland Grand Hotel in 1873

Despite all its magnificence, “the building had a number of serious drawbacks, which in time were to prove its downfall as a hotel. Although it was equipped with hydraulic lifts-receiving their power from the high-pressure water mains that used to run below the main highways in London and the first revolving door in the capital, an examination of the ridge of the Mansard roof above the dormer windows will reveal rows of chimneys. These came from the open fires in the various rooms, private as well as public, which were neither easy to service nor particularly efficient as sources of heat. … Only 12 years after the Midland Grand Hotel had been completed, work started on a rival hotel in another part of London which was to eclipse it in comfort and appointments. Funded in part from the profits of the theatre of the same name, the Savoy Hotel in the Strand was completed in 1889. During its construction, the builder asked whether, in the light of the number of bathrooms being installed, the management were expecting to entertain amphibians. While not all the bedrooms originally had their own bathroom, no fewer than 67 were provided initially. … The Midland [Grand] did not have bathrooms on anything like this scale, and not many decades were to pass before those who used hotels of this standing expected such facilities in every room. In the same way as the Midland Grand Hotel could not install central heating at an economic price, they were unable to provide all their bedrooms with baths ‘en-suite’.” [1: p22]

The Midland Grand was taken over by the London, Midland and Scottish Railway in 1922, its facilities were already outdated and it had become too expensive to run and refurbish. the demand for high-class hotel accommodation in the King’s Cross/St. Pancras area declined in the 1930s and the hotel closed in 1935. [1: p23][37]

Now renamed St Pancras Chambers, the premises settled down to a somewhat less glamourous existence as railway offices.  It retained this role until 1983. [1: p23][37]

The building survived the bombing raids of the Second World War but found itself threatened with complete demolition in the 1960s. As we have already noted, in 1967 it was awarded Grade 1 listed status in recognition of its importance as an example of high Victorian Gothic architecture. [37]

In 1983, the building failed its fire certificate and was closed down, remaining empty for many years.

Semmens continues: “the Speyhawk/McAlpine development proposals for the St. Pancras Grand Hotel, as it [was to] be titled, predated the main King’s Cross Regeneration Project. They [involved] the original hotel buildings … [and] the undercroft.” [1: p23] No Act of Parliament was required but by 1990 the plans had already received outline planning permission from the local authority. “Their implementation, however, depend[ed] closely on the larger BR scheme, not only because of the general upgrading of the area that will then result, but because the links from the new concourse to the two main-line stations will require ‘corridors: through the undercroft.” [1: p23]I

Included in the Speyhawk/McAlpine scheme, and sited in the undercroft were:

  • a leisure centre;
  • a shopping precinct (St. Pancras Plaza);
  • a cat park; and
  • a multi-screen cinema.

Above ground the scheme allowed for:

  • the conversion of the station booking hall into a hotel brasserie or coffee shop;
  • the conversion of the original hotel entrance into a night club;
  • the meeting of fire regulations by isolating the grand staircase to make it a self-contained area;
  • the installation of a modern central heating system; and
  • the provision of en-suite bathroom facilities (a challenge in a listed building).

These developments had to be set alongside significant work to the fabric of the building. [1: p23]

An illustration of the ingenious plans for the introduction of en-suite facilities into the larger rooms/suites in the hotel. The wood panelling introduced behind the large double bed, conceals the bathroom. Its height had to be kept comparatively low to preserve the original proportions of the room, © Speyhawk/McAlpine. [1: p24]

Planning permission was granted in 2004 for the building to be redeveloped into a new hotel. [38]

The main public rooms of the old Midland Grand were restored, along with some of the bedrooms. The former driveway for taxis entering St. Pancras station, passing under the main tower of the building, was converted into the hotel’s lobby. In order to cater for the more modern expectations of guests, a new bedroom wing was constructed on the western side of the Barlow train shed. [38][39]

As redeveloped the hotel contains 244 bedrooms, two restaurants, two bars, a health and leisure centre, a ballroom, and 20 meeting and function rooms. [37][38] The architects for the redevelopment were Aedas RHWL. At the same time, the upper floors of the original building were redeveloped as 68 apartments by the Manhattan Loft Corporation. [38][40]

The St. Pancras Renaissance Hotel opened on 14 March 2011 to guests; however, the formal Grand Opening was on 5 May – exactly 138 years after its original opening in 1873.[38][41]

The building as a whole including the apartments is still known as St Pancras Chambers. [38] Its clock tower stands at 76 m (249 ft) tall, with more than half its height usable. [38][42]

5: Bringing Things Up-to-date (2025)

By 2025, the redevelopment of the King’s Cross area has been completed. The final form of the development and of the railway provision is somewhat different from that described by Semmens.

Two street maps of London illustrate the changes to the site between the late 1980s and 2025. [30]

Particularly different from earlier plans, is the way in which the international high-speed and Channel Tunnel railway traffic has been accommodated within the overall project and we will come back to those changes later in this article.

It is first worth noting that King’s Cross has undergone a substantial renaissance, one that has been described as “one of the most exciting and vibrant urban regeneration schemes in Europe.” [25]

Townshend Landscape Architects were part of a team which included architects Allies and Morrison and Porphyrios Associates and started working on the development in 1999, following a design competition. The intention was to create a fully accessible and integrated piece of the city with a whole range of cultural, commercial and residential uses, including offices, shops, homes, a school, a university, healthcare and leisure facilities, within 19 designated development zones integrally linked to the surrounding city-scape and a high quality vibrant tapestry of public realm that includes 10 parks and squares. Working with King’s Cross Central Limited Partnership, the team conducted in-depth research of the site, its surroundings and its fascinating industrial history. A landscape masterplan evolved that knitted in the new scheme with its surrounding context and created a framework of connections to open up the site. Two principal access routes were identified. The first, King’s Boulevard, which opened in 2012, created a north-south link over the Regent’s Canal from King’s Cross and St Pancras Stations, past the Granary complex and on to the northern end of the site. The second runs east to west alongside the canal and creates a connection between the historic buildings including the relocated Gas Holder, Coal Drops and the Granary complex. The team agreed that establishing key pedestrian routes and spaces early in the development would be beneficial to the community and provide a catalyst to further regeneration. The North point on this plan is to the right of the image, © Townshend Landscape Architects. [25]

King’s Cross Central has evolved from an idea on paper to one of the most sought after places in London. The routes and spaces within the development provided a flexible framework for sequential development on the site, and have successfully created a sense of place during each phase of the development. Significantly, those routes and spaces link the railway stations to the former derelict Granary Building and beyond. [30]

The site as redeveloped with significant open spaces and carefully planned cycle and pedestrian routes. [26]

The plan above shows the revised concourse design which was finally adopted. It is attached to King’s Cross Station building and not to St. Pancras Station building. Redevelopment of King’s Cross Station commenced in 2008, the contract duration was 42 months with completion in 2012. The contract cost £550 million. [23]

The contract involved: constructing a 1,700 tonne geodesic steel and glass dome over the top of the London Underground ticket hall; reconstruction of platforms 1 and 8 and shortening of platforms 5 to 8 to enlarge the concourse; a new glass footbridge and escalators serving platforms 1 to 8; a new 12 car platform (300m); 4,000 m² of refurbished office space; 20,000 m² of renewed main shed roof; and 2,500m² of photovoltaic panels to generate 10% of the station’s power needs. All of which was undertaken without impacting normal station operations. [23] The main objective of the project was to provide station capacity to handle projected peak hour passenger demand within a more attractive retail and transport interchange environment.

The new concourse alongside King’s Cross Station. [23]
A second view of the same roof structure. [24]

The main outputs were: a new western concourse, four times the size of the existing one (from 2,000m² to 8,000m²); a wider range and quality of commercial outlets; better interchange with London Underground and St Pancras International Station; renewed main shed roof to provide better lighting. [23] “The historically accurate restorations and modern architectural and servicing interventions won 35 international design awards, including the coveted Europa Nostra prize for cultural heritage. Internationally, the station is widely regarded as one of the most successful large-scale historic building transformations of recent times, and is a fitting gateway to the 35ha regeneration scheme immediately to the north.” [24]

Islington Gazette comments: King’s Cross is now ‘vital piece’ of London economy after regeneration. [27]  The area North of the two railway stations is now “a haven for offices, chain shops and restaurants.” [27] A study, by Regeneris, “was commissioned by Argent, one of the two companies behind the redevelopment. Regeneris said the project has helped create 10,000 jobs and £600million for the economy per year.” [27]

King’s Cross is the largest mixed-use development in single ownership to be developed in central London for over 150 years. The 67-acre site has a rich history and a unique setting – and it is adjacent to the best-connected transport hub in London. Post World War II the area declined from being an industrial and distribution services district to a rundown post-industrial area. What is emerging at King’s Cross is a vibrant new city quarter of offices, homes, community facilities, schools, a world-renowned university in Central Saint Martins as well as a host of shops, restaurants, bars and cultural venues. When complete, there will be 50 new and refurbished buildings set in an exciting and inspiring network of new streets, squares, parks and public space. 2,000 new homes, 3 million square feet of offices and hundreds of new shops are being delivered as part of the scheme. Universal Music Group, Google, YouTube, and Facebook are some of the high-profile tenants that will have offices and buildings in the area. The development is circa 85% complete with an estimated completion date of around 2025. … Coal Drops Yard is a spectacular reinvention of Victorian industrial railway sheds creating a unique public and retail destination within Kings Cross’s heart. This was a highly complex and challenging project because of its unique “kissing roof” and its Victorian heritage; data capture was difficult but this challenge was overcome. “BAM’s innovative use of digital was instrumental in the delivery of the scheme allowing us to improve the accuracy of repairs; map survey images to elevations and schedule the works required to give a clear scope of works and cost. In addition, our use of 3D Rhino software allowed BAM Design, Heatherwick Studio and Arup to refine the complex roof form and structure.” Coal Drops Yard is an amazing structure; there are many other architecturally impressive buildings on the site. [29]
A ‘fish-eye’ lens aerial view of the site from the West. [28]
Aerial views over the King’s Cross site in 2004, left, and 2022 right. [28]

Rowan Moore comments that, “The two-decade transformation of the industrial site north of King’s Cross station in London, once notorious, now a pleasant enclave of offices, homes, shops, bars and boulevards, is essentially complete. It’s a huge success. …  The near quarter-century, kilometre-long, 67-acre project to redevelop King’s Cross in London is a monument of its age. It is the urban embodiment of the Blair era in which it was conceived, of the third way, of the idea that market forces, wisely guided by light-touch government, can be a power for good. It will get into the history books about cities (if such things are written in the future), representing its time in the same way that John Nash’s Regent’s Park represents the Regency and the Barbican represents the 1960s.” [28]

The development runs from the terminuses of St Pancras and King’s Cross through a central open space called Granary Square, to a dense cluster of blocks and towers at its northern end, formed around a long oblong lawn with [Alison] Brooks’s building at its head, which includes most of the most recent additions. It is phenomenally successful, both commercially and at achieving its stated aims. Its developers, Argent (selected in 2001), set out to achieve somewhere like the sort of cities where you might want to go on holiday, with open spaces that one of its architects calls “incredibly pleasant”, and – contemplating children from surrounding areas playing in its fountains, or office workers and art students lounging in its open spaces – it has certainly done that. It has created, in its 50 new and restored buildings, about 1,700 homes, more than 40% of them affordable, 30 bars and restaurants, 10 new public parks and squares, 4.25m sq ft of offices and capacity for 30,000 office jobs.” [28]

6. St. Pancras International and Rail Decisions & Developments

This drawing illustrated the high concentration of vital rail infrastructure in or under the King’s Cross development area. [43: p21]

The strategic decision was taken to focus international and domestic high-speed services at St. Pancras. The decision to have St Pancras as the terminus for the CTRL was heavily driven by the ambition to regenerate East London. 

HS1 (previously the Channel Tunnel Rail Link, or CTRL) is a high-speed line which connects the Channel Tunnel with London, via Stratford, Ebbsfleet and Ashford in Kent. Eurostar services began serving St. Pancras on opening. Prior to the opening of the high-speed line, Eurostar services operated from Waterloo International. Domestic high-speed services between St. Pancras and Kent were introduced in December 2009.

HS1 was initially planned to tunnel through south-east London to an underground King’s Cross international station much as discussed by Semmens. However, in 1994 this plan was rejected, and the decision was taken to approach London from the east, terminating at St. Pancras. [43: p21-22]

In 1994, St. Pancras station was seen as not realising its full potential as a station. The original route involved expensive tunnelling under listed buildings, a medieval hospital and the King’s Cross gasworks, while the route into St. Pancras could follow the existing North London Line. [43: Appendix B]

As a result of the decision to locate HS1 at St. Pancras, the station was extended to hold extra platforms and extend existing platforms to the required length for Eurostar. On completion there were 13 platforms: 4 for Midland Main Line services on the western side, 6 for international services in the central train shed, and 3 for HS1 domestic services to Kent on the eastern side. On opening, HS1 could carry up to 8 Eurostar services per hour as well as up to 8 domestic high-speed services per hour, along with two open access paths. … Once St. Pancras opened to international services in 2007, Eurostar moved their operations to St. Pancras and stopped serving Waterloo. Domestic HS1 services launched in 2009 using new Class 395 ‘Javelin’ trains, as part of a major revision of the Southeastern timetable in December 2009.” [43: p22]

As a result of the work to bring HS1 to St. Pancras and the increased services this would bring to the area, the King’s Cross Thameslink station and King’s Cross St. Pancras underground station needed to be expanded to handle the additional passenger traffic. The decision to relocate the King’s Cross Thameslink station to St. Pancras was originally intended to accommodate the Thameslink Programme, which would introduce additional and longer trains connecting North and South London through the Snow Hill tunnel. … When the new Thameslink station was constructed, it was driven by three purposes: to accommodate the expanded Thameslink network, to improve safety and passenger experience at the station, and to serve the new Eurostar/HS1 terminal at St. Pancras. The new St. Pancras Thameslink station opened in December 2007, separately from and in advance of the wider Thameslink Programme. … Regarding the Underground station, a key recommendation of the Fennell report following the 1987 King’s Cross Fire was taking action to improve passenger flow, ease congestion and improve safety at the King’s Cross St. Pancras Underground station. In response, the London Underground (King’s Cross) Act was passed in 1993. Two new ticket halls were constructed: the western ticket hall and northern ticket hall. The western ticket hall was opened in 2006, doubling the station capacity at the time to serve HS1, Thameslink and visitors to the 2012 Olympics. The northern ticket hall opened in 2009, further doubling station capacity and reducing congestion. It also allowed step-free access to the Underground platforms and was described as essential to effectively managing future passenger numbers. This ticket hall also connects directly to the HS1 domestic station via a direct subway link.” [43: p22-23]

The interior of the redeveloped St. Pancras trainshed looking North from the back of the hotel. [47]
A view, looking South through the refurbished St. Pancras trainshed towards the hotel. [47]

Refurbishment of St. Pancras to receive Eurostar services required a highly complex programme of expansion, modernisation and restoration. St. Pancras Interational Station became a key urban hub leading to the redevelopment of the surrounding area through added retail and hospitality. The project included the full restoration of the existing Grade I listed station, incorporating the technical requirements of a transport interchange fit for the 21st century.

Throughout construction and restoration of this complicated scheme, London Midland connections were kept almost entirely operational with minimal inconvenience to both staff and passengers throughout the design. The result is a thoroughly modern transport interchange with over 45 million passengers passing through the zone every year. [48]

Rail services operate at the high level under the trainshed roof with retail sited in the undercroft. [49]

Shops and cafés occupy what was formerly a Victorian store for beer brewed in the Burton-on-Trent breweries. Within the Grade 1 listed building, The design of the undercroft exposed the original brick arches to the former beer vaults within new fully glazed shop fronts. Opening up the platform level to expose the undercroft revealed a naturally lit main concourse that acts as the main thoroughfare connecting different parts of the complex. The designers say that “the cafés and bars on the main concourse connect via escalators and lifts to the hotel and restaurants at the platform level, providing intuitive connectivity throughout the public areas.” [49]

Developments after the completion of HS1 and St. Pancras International illustrate just how rapid change has been over the years. They have included:

A.  The East Coast Main Line Upgrade which began in 2019 and which includes:

  • the construction of a new platform and track at Stevenage – which encompassed a 126 metre-long platform (featuring amenities like a passenger lift and ticket vending machines), and 2 km of new track, permitting more frequent services between Hertford and Stevenage North and which opened in August 2020;
  • work at Werrington (North of Peterborough) to improve capacity and reliability of passenger services – a new two track line and tunnel separating freight and passenger movements and eliminating the delay caused by freight trains crossing the East Coast Main line; 
  • improvements to power supply infrastructure to enable the use of electric trains; and
  • King’s Cross Expansion – renewing and expanding tracks, signalling and overhead equipment serving King’s Cross Station, particularly the reopening of the third tunnel (‘King’s Uncrossed’ – December 2020 – June 2021) enabling increased service frequency.

For the sake of completeness, Wikipedia also lists further major works to improve services on the East Coast Main Line which include: [44]

  • Power supply enhancement on the diversionary Hertford Loop route;
  • Re-quadrupling of the route between Huntingdon and Woodwalton (HW4T), which was rationalised in the 1980s during electrification (part of the ECML Connectivity programme);
  • Enhanced passenger access to the platforms at Peterborough and Stevenage;
  • Replacement of the flat crossing at Newark with a flyover;
  • Upgrading of the Down Fast line at Shaftholme Junction from 100 mph to 125 mph and higher-speed associated crossovers (part of the ECML Connectivity programme);
  • Modified north throat at York station to reduce congestion for services calling at platforms 9 – 11 (part of the ECML Connectivity programme);
  • Freight loops between York and Darlington (part of the ECML Connectivity programme);
  • Darlington station up fast line platform and future station remodelling as part of HS2;
  • Fitment of TASS balises and gauging/structure works proposed by the open-access operator GNER (Alliance Rail) to enable tilt operation of Pendolino trains north of Darlington station, supporting its aspirations for express 3 hr 43 min London to Edinburgh services;
  • Power supply upgrades (PSU) between Wood Green and Bawtry (Phase 1 – completed in September 2017) and Bawtry to Edinburgh (Phase 2), including installation of static frequency converter (Frequency changer) technology at Hambleton Junction and Marshall Meadows Bay area.
  • Level-crossing closures between King’s Cross and Doncaster: As of July 2015 this will no longer be conducted as a single closure of 73 level crossings but will be conducted on a case-by case basis (for example, Abbots Ripton Level Crossing will close as part of the HW4T scheme)
  • Increasing maximum speeds on the fast lines between Woolmer Green and Dalton-on-Tees up to 140 mph (225 km/h) in conjunction with the introduction of the InterCity Express Programme, level-crossing closures, ERTMS fitments, some overhead line ewuipment (OLE) rewiring and the OLE PSU – estimated to cost £1.3 billion (2014). This project is referred to as “L2E4” or London to Edinburgh (in) 4 Hours. L2E4 examined the operation of the IEP at 140 mph on the ECML and the sections of track which can be upgraded to permit this, together with the engineering and operational costs.
  • In June 2020 it was reported that the UK government would provide £350 million to fund the UK’s first digital signalling system on a long-distance rail route. The signalling is to be fitted on a 100-mile (161 km) section of the East Coast Main Line between King’s Cross, London, and Lincolnshire, which will allow trains to run closer together and increase service frequency, speed and reliability. The first trains are expected to operate on the East Coast Main Line using this digital signalling technology by the end of 2025, with all improvements scheduled for completion by 2030. [45]

B. Upgrades to the Midland Main Line into St Pancras which were first proposed in 2012 as part of the High Level Output Specification for Control Period 5, to include electrification of the line between London and Sheffield, but paused in 2015 along with the rest of the HLOS plans in order to carry out a review. Work was restarted later in 2015, then cancelled again in 2017, and were finally re-announced in 2021 as part of the Integrated Rail Plan. [43: p24][46]

C. Rail and Tube service changes since 2000: various changes to the Rail and Tube services which call at King’s Cross and St Pancras over the past quarter century. As of November 2022, these changes included:

  • Eurostar – 2007 – Services moved from Waterloo to St Pancras; 2015 – Introduced direct London-Lyon/Avignon/Marseille service in summer season; 2018 – 2 train per day London-Amsterdam service introduced; 2019 – Third daily service to Amsterdam introduced; 2020 – Direct Amsterdam-London services introduced;
  • Southeastern High Speed – 2009 – Domestic HS1 services began; 2012 – Operated high speed ‘Javelin’ services between St Pancras and Stratford during London Olympics;
  • East Midlands Railway – 2003 – 1 train/hour (tph) St Pancras-Manchester ‘Project Rio’ service introduced while WCML underwent engineering work (ended 2004); 2007 – East Midlands Trains franchise created, merging Midland Mainline and Central Trains; 2008 – 1 tph introduced to Corby; 2009 – 2 tph introduced to Sheffield by extending 1 tph London-Derby; 2019 – Franchise awarded to  EMR;
  • Thameslink – 2007 – Thameslink platforms open at St Pancras; 2009 – 15 tph peak hour service introduced on core section; 2018 – A large timetable change in May reintroduced cross-London services via London Bridge and many new services; 2019 – Cambridge-Brighton service doubled to 2 tph in each direction;
  • London North Eastern Railway – Early 2000s – Increased Leeds services from 37 trains/day (tpd) to 53 tpd as Class 373s were moved to GNER; 2011 – ‘Eureka’ timetable change simplified stopping patterns and introduced 1 tpd London-Lincoln service; 2015 – VTEC awarded franchise; introduced daily services to Stirling and Sunderland; 2016 – Newcastle services extended to Edinburgh; 2018 – Franchise awarded to London North Eastern Railway (LNER); 2019 – ‘Azuma’ trains enter service; expanded service to Lincoln and Harrogate by extending existing services every other hour;
  • Great Northern/Thameslink – 2007 – King’s Cross Thameslink station closes with through services moved to St Pancras; 2018 – Great Northern route connected to Thameslink, resulting in several services moving to St Pancras and continuing through London;
  • Grand Central – 2007 – Services begin with 1 tpd London-Sunderland; 2008 – Introduced a 3 tpd service to Sunderland; 2009 – Introduced a 4th daily service to Sunderland; 2010 – Introduced 3 tpd between London and Bradford; 2012 – Added a 5th Sunderland service; 2013 – Added a 4th Bradford service;
  • Hull Trains – 2000 – Services begin with 3 tpd London-Hull: 2002 – 4th daily service to Hull; 2004 – 5th daily service to Hull; 2005 – 6th daily service to Hull; 2006 – 7th daily service to Hull; 2015 – 1 tpd extended to Beverley; 2019 – 2nd daily service extended to Beverley;
  • Lumo – 2021 – Service commenced;
  • Tube – Circle – 2009 – Broke the ‘circle’ with extension to Hammersmith;  2014 – New S Stock trains; 
  • Tube – Hammersmith & City – 2012 – New S Stock trains
  • Tube – Metropolitan – 2010 – New S Stock trains;
  • Tube – Northern (Bank branch) – Automatic Train Operation (ATO) introduced, permitting up to 26 tph (up from 20 tph);
  • Tube – Piccadilly – 2008 – Heathrow T5 extension opened; 2016 – Night Tube begins (6 tph); and
  • Tube – Victoria – 2009 – New rolling stock; 2013 – New signalling permitting 33 tph (up from 27 tph); 2016 – Night Tube begins (6 tph); 2017 – New timetable of 36 tph. [43: Appendix C]

References

  1. P. W. B. Semmens; King’s Cross Renaissance: The History, Development and Future of Two Great Stations; in The Railway Magazine (Supplement); London, June 1990.
  2. https://maps.nls.uk/geo/explore/#zoom=16.5&lat=51.53248&lon=-0.12622&layers=168&b=ESRIWorld&o=0, accessed on 28th March 2025.
  3. https://maps.nls.uk/geo/find/#zoom=16.0&lat=51.53335&lon=-0.12626&layers=101&b=1&z=0&point=0,0, accessed on 28th March 2025.
  4. https://www.britainfromabove.org.uk/image/EPW039585, accessed on 28th March 2025.
  5. https://www.britainfromabove.org.uk/image/EAW006467, accessed on 28th March 2025.
  6. https://www.kingscross.co.uk/granary, accessed on 28th March 2025.
  7. History of the British Library; British Library; via https://web.archive.org/web/20100213000359/http://www.bl.uk/aboutus/quickinfo/facts/history/index.html, accessed on 29th March 2025.
  8. https://en.m.wikipedia.org/wiki/British_Library, accessed on 29th March 2025.
  9. British Library Announces Collection Moves Strategy; British Library; via https://web.archive.org/web/20140416182852/http://pressandpolicy.bl.uk/Press-Releases/The-British-Library-Announces-Collection-Moves-Strategy-34e.aspx, accessed on 29th March 2025.
  10. https://blogs.bl.uk/living-knowledge/2018/06/celebrating-the-british-library-at-st-pancras.html, accessed on 29th March 2025.
  11. https://www.scienceandsociety.co.uk/results.asp?image=10322517, accessed on 29th March 2025.
  12. https://www.lassco.co.uk/lassco-news/2022/03/16/ironwork-from-the-greatest-forgotten-wall-in-london, accessed on 29th March 2025.
  13. Frederick McDermott; The Life & Work of Joseph Firbank J.P. D.L – Railway Contractor; Longmans,Green And Co, London, 1887.
  14. https://commons.m.wikimedia.org/wiki/File:Kings_Cross_ILN_1852.jpg, accessed on 29th March 2025.
  15. https://www.lner.info/co/GNR/kingscross.php, accessed on 29th March 2025.
  16. Diagram of King’s Cross station layout in 1905; in The Railway Magazine, London, March 1905.
  17. https://stpancras-highspeed.com/news-events/st-pancras-built-on-beer, accessed on 31st March 2025.
  18. https://www.facebook.com/share/p/166PHsXCMm, accessed on 31st March 2025.
  19. https://www.networkrail.co.uk/who-we-are/our-history/iconic-infrastructure/the-history-of-london-st-pancras-international-station, accessed on 31st March 2025.
  20. https://prod.highspeed1.co.uk/history/creating-an-icon, accessed on 31st March 2025.
  21. St. Pancras; in The Railway Magazine, London, November 1905.
  22. The King’s Cross Central Limited Partnership; Kings Cross Overview; www.kingscross.co.uk; via https://acrobat.adobe.com/id/urn:aaid:sc:EU:1ae487a5-1d7e-4649-aa81-c14df74da19c, accessed on 2nd April 2025.
  23. https://www.networkrailconsulting.com/our-capabilities/network-rail-projects/kings-cross-station-redevelopment-programme, accessed on 2nd April 2025.
  24. https://www.mcaslan.co.uk/work/kings-cross-station, accessed on 2nd April 2025.
  25. https://townshendla.com/projects/kings-cross-central-9, accessed on 2nd April 2025.
  26. https://www.neighbourhoodguidelines.org/urban-regeneration-kings-cross, accessed on 2nd April 2025.
  27. https://www.islingtongazette.co.uk/news/21231577.kings-cross-now-vital-piece-london-economy-regeneration-concludes-study-paid-developers, accessed on 2nd April 2025.
  28. Rowan Moore; ‘Nervous of its own boldness’: the (almost) radical rebirth of King’s Cross; in The Guardian, April 2024; via https://www.theguardian.com/artanddesign/2024/apr/28/the-almost-radical-rebirth-of-kings-cross-london-alison-brooks-architects-cadence, accessed on 2nd April 2025.
  29. https://irishbuildingmagazine.ie/2019/12/01/big-build-kings-cross-redeveloped, accessed on 2nd April 2025.
  30. https://programme.openhouse.org.uk/listings/7788, accessed on 2nd April 2025.
  31. https://en.m.wikipedia.org/wiki/King%27s_Cross,_London, accessed on 2nd April 2025.
  32. https://hansard.parliament.uk/commons/1991-11-25/debates/1c8b808c-d20e-4096-b895-e8903961f279/KingSCrossRailwaysBill, accessed on 2nd April 2025.
  33. https://hansard.parliament.uk/Commons/1990-12-10/debates/31caf74f-6b61-4f41-b553-b17e0f91a28b/KingSCrossRailwaysBill, accessed on 2nd April 2025.
  34. https://api.parliament.uk/historic-hansard/commons/1993/oct/28/kings-cross-railways-bill, accessed on 2nd April 2025.
  35. https://www.marriott.com/en-gb/hotels/lonpr-st-pancras-renaissance-hotel-london/overview, accessed on 3rd April 2025.
  36. W. Pembroke Fetridge; Harper’s hand-book for travellers in Europe and the east; Harper & Brothers, London, 1885.
  37. https://www.urban75.org/london/st_pancras1.html, accessed on 3rd April 2025.
  38. https://en.m.wikipedia.org/wiki/St_Pancras_Renaissance_London_Hotel, accessed on 3rd April 2025.
  39. Before and after: historic buildings restored and transformed; in the Daily Telegraph, 22nd March 2013;, via https://web.archive.org/web/20130322044716/http://www.telegraph.co.uk/property/renovatinganddiy/9943413/Before-and-after-historic-buildings-restored-and-transformed.html, accessed on 3rd April 2025.
  40. Manhattan Loft Corporation; St Pancras Chambers by Manhattan Loft Corporation; via https://www.manhattanloft.co.uk/projects/st-pancras-renaissance-hotel, accessed on 3rd April 2025.
  41. Mark Easton; A monument to the British craftsman; BBC, 5th May 2011; via https://www.bbc.co.uk/blogs/thereporters/markeaston/2011/05/a_monument_to_the_british_craf.html, accessed on 3rd April 2025.
  42. Gerard Peet; The Origin of the Skyscraper (PDF); Council on Tall Buildings and Urban Habitat Journal No. 1, 2011, p18–23. via JSTOR, http://www.jstor.org/stable/24193146; accessed 3rd April 2025.
  43. Steer, for the Department of Transport; King’s Cross and St Pancras: Wider Impacts of Station Investment (PDF), November 2022; via https://acrobat.adobe.com/id/urn:aaid:sc:EU:85b1ae4a-109e-476b-9d1c-4cec59c8beb3, accessed on 11th April 2025.
  44. https://en.m.wikipedia.org/wiki/East_Coast_Main_Line, accessed on 12th April 2025.
  45. East Coast Digital Programme; Network Rail; via https://www.networkrail.co.uk/running-the-railway/our-routes/east-coast/east-coast-digital-programme, accessed on 12th April 2025.
  46. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/3641/railways-act-2005.pdf, accessed on 12th April 2025.
  47. https://www.railway-technology.com/projects/stpancrasinternation/?cf-view, accessed on 12th April 2025.
  48. https://www.pascalls.co.uk/projects/work/rail/st-pancras-station, accessed on 12th April 2025.
  49. https://www.chapmantaylor.com/projects/st-pancras-international, accessed on 12th April 2025.
  50. My thanks to Al Kotulski for pointing this out on 14th April 2025.

The Kingsway Tram Subway, London

The Modern Tramway and Light Railway Review of November 1963 carried an article by C.S. Dunbar about the Kingsway Tram Subway. It seemed an opportune moment to focus on the Subway as the southernmost portion of the tunnel was about to open to motor traffic as the Strand Underpass.

An image in my blog in an article about the last few years of London’s tram network prompted some response. [2] So, having read his article, I thought that reproducing most of C.S. Dunbar’s article here might be of interest to others. …

Another fantastic hand-drawn map which shows the extent of services operated via the Subway from 1908 to 1948. The drawing incorporates a key to the years during which the various services were run. The final abandonment dates were 1950 for service 31 and 1952 for services 33 and 35. The Kingsway Tramway Subway sits approximately at the centre of the map the stops for Holborn and for Aldwych can be made out relatively easily. The Subway links the tramway network North of the River Thames with the network South of the River. Although the tunnel opened in 1906 It needed to rely on the approval of Parliament for the route along the Embankment which came in 1906 and eventually the link to the network South of the River was not used until 1908, © The Omnibus Society. [1:p323]

The former tramway subway ran beneath Aldwych and Kingsway.  “When the London County Council, as the tramway authority for the Metropolis, decided that it would itself operate the services as the various leases fell in, the question of joining up the separate company systems became very important, particularly with a view to giving communication between the north and south sides of the river. The decision to clear an insanitary area in Holborn, and to construct Aldwych and Kingsway, led to discussion in 1898 on the possibility of using the new streets for a tramway to connect the northern and southern systems. It was then suggested that instead of running the trams on the streets, a sub-surface line should be constructed as an integral part of the improvement. Something similar had already been done in New York and Boston, and a deputation … was, therefore sent to those places.” [1: p385]

On the strength of their report, an application was made in the 1902 session of parliament for powers “to construct a subway for single-deck tramcars at an estimated cost of £282,000 from Theobalds Road to the Embankment at Waterloo Bridge, from which point a surface line would continue to and over Westminster Bridge. By the LC.C (Subway and Tramways) Act, 1902, the subway itself was approved for the whole proposed length, but the tramway was not authorised beyond the north side of the Strand. The proposed Embankment line was rejected and in fact it took the Council four years to secure powers. Many ridiculous arguments were advanced against the line, the most absurd, probably, being that the trams would interfere with members crossing the road to reach St. Stephen’s Club. Six Bills introduced by the Council between 1892 and 1905 to enable it to carry the tramways across Westminster and other bridges and along the Victoria Embankment were thrown out by one or other House of Parliament, and not until 1906 was the battle resolved in the Council’s favour.” [1: p385-386]

As events were to prove, “a great mistake was made in deciding that the subway should only provide for the passage of single-deck cars, but this decision was reached for three main reasons:

(1) to avoid a large sewer under Holborn would, it was thought, necessitate too steep a descent to be safe for double-deck cars – as it was there was a gradient of 1 in 10 from Theobalds Road;

(2) the position of the District Railway in relation to Waterloo Bridge and the gradient from the Strand presented difficulties in the way of making a satisfactory southern exit;

(3) there was a feeling that it might be found that London traffic could be handled more expeditiously with coupled single-deck cars than with double-deckers.” [1: p386]

The Tramway Subway under construction in 1904, together with the pipe subways © L.C.C. [1: p385]

Dunbar continues:

“Construction was undertaken at the same time as the new streets were laid out and as well as making provision for the trams, a pipe subway for gas and water mains 10 ft. high and 74 ft. wide was built on each side. The approach from Theobalds Road was by an open cutting 170 ft. long in the middle of the road. The tracks then passed into two cast-iron tubes, 14 ft. 5 in. in diameter and 255 ft. long, which took the tracks under the Holborn branch of the Fleet sewer. The rails were 31 ft. below the road surface when passing under Holborn, rising again at 1 in 10 to Holborn Station. Raised side-walks were provided in the single tunnels. From here to Aldwych the tunnel was 20 ft. wide with a roof of steel troughing just below the street. The running rails were laid on longitudinal wooden sleepers embedded in concrete, and since the conduit would not have to bear the weight of road traffic a special lighter design was used in which the normal slot rails were replaced by plates which could be lifted for maintenance. As usual with L.C.C. tramway figures it is difficult to ascertain the actual cost of the work, but it seems likely that the construction of the subway itself accounted for £133.500 for the 2,920 ft. from Theobalds Road to Aldwych, with a further £112.500 for permanent way and electrical equipment.

At the time the subway was opened it was not connected with any other electrified route, so it was decided to terminate the public service at Aldwych Station (situated at the junction of Aldwych and Kingsway) and to use the tracks which extended southwards from there towards the Strand as a depôt. Inspection pits were therefore constructed under this length and some repair equipment installed. An intermediate station was built at Great Queen Street (subsequently renamed Holborn). Pending the opening of Greenwich power station, current was obtained from the County of London Electric Supply Company at a cost of 1d per unit.

Single Deck Cars

Sixteen Class F tramcars (numbered 552 to 567) were ordered from the United Electric Car Company, Limited, Preston at £750 each. The Board of Trade, then the Government Department concerned with tramways, was very focussed on the risk of fire in the tunnels and the new cars had to be as non-flammable as possible. “The underframes were therefore made of steel angle and channel sections, and the body panels were of sheet steel. The slatted longitudinal seats were of non-flammable Pantasote on angle steel supports; the seating capacity of the cars was 36. Even the adjustable spring roller-blinds, with which the windows were fitted, were supposed to be non-flammable. The inside finish was entirely in aluminium. The cars were 33 ft. 6 in. long over the fenders and 24 ft. 10 in. over the body pillars. The trucks were centre bearing maximum traction bogies by Mountain and Gibson with a 4 ft. 6 in. wheelbase and 311 in diameter driving wheels. The distance between the centre of the driving axles was 14 ft. 6 in. The controllers were by Dick Kerr and included provision for using the electro-magnetic brake for service stops.” [1: p387]

Elevation and plan of the steel single-deck cars built for the London County Council by the United Electric Car Company. Dimensions were: length over fenders 33ft 6in; width at roof level 6ft 10in; height to trolley plate 11ft; wheelbase 14ft 6in. [1: p386]
Class F tramcar No. 559 poses for photographs on the subway entrance ramp at Southampton Row in 1906, before the opening of the Subway, © T.M.S. Photographic Service. [1: p389]

Dunbar continues:

Service 31 had more vicissitudes than the other two. Consequent upon the conversion of part of the Wandsworth service to trolleybuses on 12th September, 1937, it was cut back to Prince’s Head, Battersea. The conversion of the Shoreditch area caused its diversion on 10th December, 1939, to terminate at the lay-by at Islington Green (outside the Agricultural Hall) which had been put in in 1906 but never used for regular services, except possibly for a few weeks in 1909. Destination indicators, however, showed ‘Angel, Islington.’ There was a further curtailment on 6th February, 1943, when the service began working between Bloomsbury and Prince’s Head in peak hours and between Westminster Station and Prince’s Head at other times. This arrangement was unsatisfactory owing to the turning points being on through routes and the cars and crews being based at Holloway, and it was hoped as from January, 1947, to run between Islington Green and Wandsworth High Street. It was not, however, possible to introduce this improvement until 12th November, 1947.

In addition to the 100 E/3 type cars previously mentioned, 160 other cars were built to the fireproof specifications laid down for the Subway (HR/2 class 1854- 1903 and 101-159, E/3 class 160 to 210), and in later years some of these worked regularly on the subway services, particularly after war losses. After Hackney depôt closed, the cars for the subway were provided by Holloway depôt for all three services and also by Wandsworth (for 31), Norwood (33) and Camberwell (35). At one time in 1941, Holloway depôt was cut off for several days by an unexploded bomb and could only operate a shuttle service of two cars between Holloway and Highgate, during which period wooden E/1 cars from South London depôts were perforce used on the subway routes, turning back at Highbury Station. The famous L.C.C. car No. 1 of 1932 was intended for the subway services, with air-operated doors and folding steps for use at the subway stations, and worked from Holloway depôt on these services from 1932 to 1937. This car was sold in 1951 to Leeds and is now preserved at Clapham.

In 1937, the rebuilding of Waterloo Bridge necessitated the diversion of the subway exit to a position centrally beneath the new bridge, at a cost of £70,000 including a new crossing of the District Railway; after the changeover took place, on 21st November, 1937, the curved section of tunnel leading to the former exit in the bridge abutment was walled off and still exists. For the next three years, the trams entered the subway through the bare steelwork, as the new bridge took shape above their heads. In anticipation of a general conversion of the London tramways to trolleybus working, an experimental trolleybus (No. 1379) placed in service on 12th June, 1939, was so designed as to permit passengers to board and alight from the offside at Aldwych and Holborn Stations. Not until some years later did London Transport admit officially that this experiment had been a failure. The war brought a reprieve to the remaining London tramways, and was followed by a decision that the routes still working would be replaced by motor buses and the subway closed.

Owing to a need to replace worn-out buses, tramway replacement did not commence until 1950, when on 1st October, tram service No. 31 (Wandsworth High Street- Islington Green) was replaced by bus service 170 (Wandsworth High Street – Hackney L.T. Garage), running via Norfolk Street northbound and Arundel Street southbound, and taking about eight minutes from Savoy Street to Bloomsbury as against four minutes by tram. From 7th October, 1951, Camberwell depôt was closed for reconstruction and its share of service 35 taken over by New Cross. Finally, on Saturday, 5th April, 1952, trams ran through the Subway for the last time; tram service 35 (Forest Hill – Highgate) was replaced next day by bus service 172, and tram service 33 (West Norwood – Manor House) was replaced by bus service 171, West Norwood – Tottenham (Bruce Grove). The last car to carry passengers through the subway in service was E/3 No. 185, some time after midnight, and in the early hours of the following morning the remaining cars from Holloway depôt were driven south through the Subway to new homes or the scrapyard.

“A clerestory roof was fitted with a trolley plate on top, although the cars never actually carried a trolley-pole but were built solely for conduit operation. The height from the ground to the trolley plate was 11 ft. The internal height to the top of the clerestory was 7 ft. 94 in. and the width was 6 ft. 6 in. over the solebars, 6 ft. 8 in. over the pillars and 6 ft. 10 in. over the roof. There were five windows on each side. The first of the class, No. 552, was built with bulkhead doors of the twin sliding type and had side doors to the unvestibuled platforms, which interworked with the folding steps. These doors were removed before the car entered service, and the remainder of the class had the normal single door in each bulkhead and a simple sheathed chain across the platform sides.

Each bulkhead was fitted with an oil lamp above the nearside bulkhead panel, which showed either a white or red aspect externally and also threw a light into the interior of the car. These were replaced by electric lamps at an early date. Hanging from each canopy was a box for the colour- light headcode, and above the canopy was a destination indicator. Projecting from the roof at both ends was an iron bar; this struck against other bars hanging from signal lamps at the beginning of the descent from Theobalds Road travelling south and that from Holborn Station travelling north, so putting the aspect to red. Corresponding contacts were made on leaving the section in both directions to put the signals back to green, the object, of course, being to prevent more than one car in each direction being on the 1 in 10 gradient at one time.

To provide a northern connection with the subway, it was decided to electrify the line in Theobalds Road (by arrangement with the North Metropolitan Tramways Company, which then held the lease) and to construct a new line in Rosebery Avenue and St. John’s Street to the Angel, Islington. The estimate for this was £40,500, but owing to great difficulties with sub-surface mains and other obstructions the cost eventually reached £47,000. Part of the reconstructed roadway was carried on a concealed iron viaduct. Work was started on the reconstruction on 17th September, 1905. The Board of Trade inspected the Subway and the new line to the Angel on 29th December, 1905, and motormen then, began to be trained.” [1: p387]

A public service from Angel to Aldwych began on 24th February 1906, the delay was down to the Board of Trade’s worries over the non-flammable character of the tramcars. The ceremonial opening included “the first car, painted blue and gold, taking 12 minutes northbound and 10 south. This was good running, remembering that horse cars were working in Theobalds Road. Smoking was not permitted in the cars and this led one councillor to suggest the provision of open cars especially for smokers. Fares were fixed at 1d. from the Angel to Holborn Hall and from Holborn Hall to Aldwych and d. for the full journey. The novelty attracted a considerable number of passen- gers from the start and the takings for the first three days with a two-minute service averaged [just over 2s. 2d.] per mile as against 1s. per mile for the double-deckers in South London.” [1: p387]

Class G Tramcar No. 584 leaving the Subway for Westminster in 1923. The L.C.C. flaman can be seen to the right of the photograph. [1: p389]

“Meanwhile in July, 1905, the Council’s attention had been drawn to the fact that its compulsory powers for the acquisition of land and easements for the construction of the subway from Aldwych to the Embankment would expire in August. It therefore voted £50,000 for the necessary acquisition in the hope that powers for the Embankment tramway would eventually be secured. Actually £9,400 was paid to the Duchy of Lancaster and £15,250 to C. Richards and Company for the extinction of their interests in the arches under Wellington Street. In the Parliamentary session of 1905 powers were secured for an additional station south of the Strand under Wellington Street.

In November, 1905, the Council ordered a further 34 cars of a similar type to the first batch, but this time with Brush bodies, glazed bulkheads and Westinghouse equipment (Nos. 568-601, class G). It had not been possible to build steel bodies as cheaply as timber ones and the cost of these cars came out at £27,761, or nearly £817 each. On the delivery of these cars, there were sufficient to extend the route to Highbury Station on 16th November 1906, after High Street and Upper Street, Islington, had been reconstructed in the short time of 12 weeks. In fact the cars started running before the borough council had completed the wood paving at the sides of the carriageway.

When the Embankment tramway was eventually opened and powers had been obtained for the subway link, work was pushed ahead on the remaining section. This fell on a gradient of 1 in 20 from Kingsway to the Strand, 1 in 108.3 under the Strand, and was then level; it was far more costly to construct than the original length, mainly owing to difficulties in crossing the District Railway. The final 620 ft, in fact, cost £96,000 exclusive of permanent way and equipment. The cost would have been £20,000 more had the proposed station at Wellington Street been built, but in March, 1907, the Council decided that the proposal should be aban- doned, as the site was only 200 yards from the Embankment and the platform would be 32 ft. below ground. This decision enabled the extension to be opened nine months earlier than would have been the case otherwise. The Council undertook the whole of the work by direct labour and completed it in about twelve months. South of Aldwych Station, the tracks curved sharply to the south-west in twin tunnels and continued beneath Aldwych as a single tunnel with brick-arch roof, separating again at the Strand into twin cast-iron tubes which continued to about a third of the way under Lancaster Place. The exit on to the Embankment was through the western wing wall of Waterloo Bridge and here a triangular junction was constructed. The eastern side of the junction, leading towards Blackfriars, was never used and was removed during the 1930 re-construction referred to later.

Through services were inaugurated on 10th April, 1908, from Highbury Station to Tower Bridge and from Highbury Station to Kennington Gate. Fares ranged from 0.5d. to 3d, (the maximum on both routes). Special workmen’s fares of 1d. single and 2d, return were given from any terminus to Waterloo Bridge. The journey times varied from 47 to 50 minutes on the Tower Bridge route and 41 to 44 on the other. A six minute service was given on each route with early morning extras between Highbury and Aldwych. The cars were stabled at Holloway and New Cross depôts.

The Kennington service did not pay and in looking for another route on which to use the single-deck cars, the management thought of Queen’s Road, Battersea, on which it was impossible to run double- deckers owing to a low railway bridge. The Kennington service was therefore diverted on 25th January, 1909, to work between St. Paul’s Road and Lavender Hill via Battersea Park Road, giving a service to the Lavender Hill area while the Wandsworth Road line was being electrified. As Essex Road was being reconstructed at this time, it is possible that cars actually turned at the Angel or at Agricultural Hall for some weeks. The through fare was 4d. and the journey time 52 minutes. Transfer fares to Kennington were given. In May, 1910, the Angel definitely became the northern terminus, with a short service working between St. Paul’s Road and Southampton Row. In the following year, the southern portion was cut back to Vauxhall, the crossover in Wandsworth Road by the gas works being used. Transfers were issued to Battersea On 17th June, 1912, the service was again extended but this time to Clapham Junction via Battersea Park Road and the Sunday afternoon service began to work from Southgate Road. In the summer of 1911 (probably on 22nd June) the Tower Bridge service was extended to Tooley Street (Bermondsey Street), the through fare remaining at 3d. and the journey time being 52 minutes, but a year or so later Tower Bridge again became the terminus. The junction westward into Tooley Street was replaced in 1923 by one in the opposite direction.

Until 1912, the cars carried colour-light headcodes, the original through services displaying red-green-red for Highbury Station – Tower Bridge and blank-green-blank for Highbury Station – Kennington Gate. When L.C.C. routes began to be numbered in September, 1912, the Tower Bridge service became 33 and that to Clapham Junction 35, the number being hung from the canopy. This arrangement, used on double-deck cars only until upper deck stencils were fitted, was retained on the subway cars until 1930. On 28th October, 1913, 35 was altered to run between Highbury and Belvedere Road only, the southern part of the service being taken over by 86 from Embankment to Clapham Junction. At this time cars on 35 turned at a lay-by in St. Paul’s Road at one end of the route and in Lambeth Palace Road at the other. A year or so later, Westminster Station became the southern terminus. Service 33 was withdrawn altogether, but reappeared after the 1914-18 war as a weekday service between Highbury and County Hall, while 35 then became Highgate – County Hall. After the withdrawal of 33, Tower Bridge Road was covered by 68 from Waterloo Station. In July, 1924, both 33 and 35 were extended to the Elephant and Castle via St. Georges Road, obtaining at last a terminus at which the cars could stand without obstructing other through services. The author believes that the subway services were the only ones which ever regularly used the southbound track in St. Georges Road. When cheap mid-day tickets were instituted, Savoy Street was taken as the ‘City terminus’ on southbound cars and Bloomsbury on northbound. [1: p387-389]


Decision to Enlarge

As years went by, the L.C.C. increasingly became aware that single-deck cars could not be made profitable. The use of double-deck rolling stock would allow many useful connections and the movement of rolling-stock across the Thames would be facilitated. The, then current, route for double-deck trams to cross the Thames was via North Finchley, Putney and Wandsworth.

In 1929, the L.C.C. decided to increase the headroom to 16 ft. 6 in. They sought to raise the roof at the northern end and deepen the tunnel at other places. The decision resulted in observations that the subway might well be “enlarged to take motor traffic as well as trams, but the Metropolitan Police Commissioner pointed out that congestion would arise at each end of the tunnel, that a serious traffic block would quickly develop if a vehicle broke down inside, and that there was a danger of exhaust fumes and even fire. The London Traffic Advisory Committee recommended that the tunnel could serve no useful purpose as a motor-way, and the L.C.C. would have nothing to do with the idea. Nevertheless, on the day the subway was reopened, The Times returned to the theme and hoped that the tunnel would be available for omnibuses and other vehicles ‘when tramways have had their day.'” [1: p390]

Dunbar continues:

“The contract was awarded to John Cochrane and Sons, Limited, who started work on the street level on 11th September, 1929, this necessitating the temporary diversion via Hart Street and Theobalds Road of bus services 7 and 184. North of Holborn the roadway was opened up and the twin tunnels replaced (after sewer diversions) by one wide passage with a steel girder roof, while elsewhere the additional headroom was obtained by under-pinning the side walls with concrete and lowering the track by approximately 5 ft. The estimated cost was £326,000 including £76,000 for the reconstruction of the 50 single-deck cars. On and from 16th January, 1930, only one tram service (numbered 33) ran through the subway from Highgate to the Elephant, while 35 worked Highgate – Bloomsbury. The single-deck cars carried passengers through the subway for the last time on Monday morning, 3rd February, 1930, after which the subway was closed altogether, a connection being maintained by temporary L.G.O.C. bus service 175 (Islington – Charing Cross Embankment via Kingsway and Northumberland Avenue, returning via Norfolk Street, Strand and Aldwych). On 14th May another bus service – 161 – was put on between Islington and Waterloo on weekdays only. The two tramway stations were rebuilt and modernised, that at Holborn being finished in travertine, a cream marble used in ancient Rome. Standard trackwork with yokes and slot-rails set in concrete was used in place of the special type evolved for the original construction.

It had been hoped that the subway would be reopened by the Prince of Wales on 17th December, 1930, and in anticipation of this car No. 1930 was painted blue and gold. Actually, however, it was not possible to start experimental runs before 5th January 1931. The formal reopening was performed on Wednesday, 14th January, 1931, by the Chairman of the Council, Major Tasker, car No. 1931 painted white with blue lining being employed, followed by two other cars. These ran from the Embankment to Theobalds Road and back to Holborn Station, where one of the platform seats served as a rostrum for the speeches. Public service commenced at 5 o’clock next morning, with a one-minute headway and a total of 5,000 cars per week. The L.C.C. issued a special booklet describing the subway’s history and reconstruction and listing the new services and transfer facilities, together with the running times. [1: p390]

A white E/3 tramcar. This is car No. 1931, about to leave Camberwell Depot to perform the Kingsway Subway re-opening ceremony on 14th January 1931, © London Transport Museum. [1: p391]

New Cars

“The subway service was worked by the new E/3 class cars (Nos. 1904-2003) which had been ordered in June, 1929, from Hurst, Nelson & Co., of Motherwell, and had been working on various South London services until the subway was ready. In the subway, it became necessary to use the drivers’ platforms and the front stairways for boarding and alighting at the island platforms of Holborn and Aldwych stations. The former bar-operated signals at Holborn and Bloomsbury were replaced by others worked by the passage of the plough in the conduit slot. The single-deck cars were withdrawn and the trucks and Westinghouse equipments used under new English Electric composite bodies, but still bearing the original numbers (552-601). The single- deck car bodies were offered for sale in 1930, to be collected at Holloway or Charlton. In earlier years, some of these cars were stabled, first at Jew’s Row and later at Clapham for the Queens Road service, while in 1911 some were sent to Hampstead for the experiment with coupled cars which took place between January and August of that year on the Hampstead – Euston route.

Public service through the subway began again on 15th January, 1931, with three services: 31, Hackney Station – Wandsworth High Street via Shoreditch and Battersea Park Road (73 minutes, weekdays), Hackney – Tooting Junction (Saturday evenings) and Leyton Station L.M.S. – Westminster Station (54 minutes, Sundays); 33, Highbury Station – Water Lane, Brixton (42 minutes, weekday peak hours), with occasional workings to Norbury; 35, Highgate, Archway Tavern-New Cross Gate via Kennington (59 minutes, daily). It was originally intended to work 31 through to Wimbledon via Haydon’s Road, but this was never done. From 19th April to 4th October, 1931, the Sunday working of this service was from Leyton, Baker’s Arms, to Tooting Junction (17 miles). A similar arrangement prevailed in subsequent summers, but for the rest of the year the Sunday workings were between Baker’s Arms and Wandsworth.

Service 33 was altered twice during 1931 and began operating in off-peak hours, being diverted first to Norwood on 14th May, and then at the other end to Manor House on 8th October, after which it remained unchanged. Also on 14th May, 1931, 35 was extended to Forest Hill (Cranston Road) via Brockley, the indicators actually showing Brockley Rise. A Saturday evening and Sunday working was instituted between Highgate and Downham via Brockley – 16 miles the longest tram service ever operated entirely inside the County of London. The dates of this service are uncertain, but it was definitely working on 8th October, 1931. It possibly ceased after 5th March, 1932, on which date the southern terminus of 35 became the lay-by at Forest Hill Station. On 30th June, 1932, the route was diverted via Walworth Road instead of via Kennington and thereafter remained unchanged. On 1st June, 1933, short workings were introduced between Highbury and Elephant and Castle via St. Georges Road. These were numbered 35A.” [1: p390-392]

The view South through the Holborn Street Halt/Station, © London Transport Museum. [3]

Route 31 saw a series of different changes over its life. Dunbar tells us that “consequent upon the conversion of part of the Wandsworth service to Trolleybuses on 12th September 1937, it was cut back to Prince’s Head, Battersea. The conversion of the Shoreditch area caused its diversion on 10th December 1939, to terminate at the lay-by at Islington Green (outside the Agricultural Hall) which had been put in in 1906 but never used for regular services, except possibly for a few weeks in 1909. Destination indicators, however, showed ‘Angel, Islington’. There was a further curtailment on 6th February 1943, when the service began working between Bloomsbury and Prince’s Head in peak hours and between Westminster Station and Prince’s Head at other times. This arrangement was unsatisfactory owing to the turning points being on through routes and the cars and crews being based at Holloway, and it was hoped as from January 1947, to run between Islington Green and Wandsworth High Street. It was not, however possible to introduce this improvement until 12th November 1947.”[1: p392-394]

“In addition to the 100 E/3 type cars previously mentioned, 160 other cars were built to the fireproof specifications laid down for the Subway (HR/2 class 1854 to 1903 and 101-159, E/3 class 160 to 210). and in later years some of these worked regularly on the subway services, particularly after war losses. After Hackney depôt closed, the cars for the subway were provided by Holloway depôt for all three services and also by Wandsworth (for 31), Norwood (33) and Camberwell (35). At one time in 1941, Holloway depôt was cut off for several days by an unexploded bomb and could only operate a shuttle service of two cars between Holloway and Highgate, during which period wooden E/ cars from South London depôts were per- force used on the subway routes, turning back at Highbury Station. The famous L.C.C. car No. 1 of 1932 was intended for the subway services, with air-operated doors and folding steps for use at the subway stations, and worked from Holloway depôt on these services from 1932 to 1937. The car was sold in 1951 to Leeds and is preserved at Clapham. [1963]

In 1937, the rebuilding of Waterloo Bridge necessitated the diversion of subway exit to a position centrally beneath the new bridge, at a cost of £70,000 including a new crossing of the District Railway; after the changeover took place, on 21st November, 1937, the curved section of tunnel leading to the former exit in the bridge abutment was walled off and still exists. For the next three years, the trams entered the subway through the bare steelwork, as the new bridge took shape above their heads. In anticipation of a general con- version of the London tramways to trolley- bus working, an experimental trolleybus (No. 1379) placed in service on 12th June 1939, was so designed as to permit passengers to board and alight from the offside at Aldwych and Holborn Stations. Not until some years later did London Transport admit officially that this experiment had been a failure.” [1: p394]

The subway entrances, old and new, at the Victoria Embankment in 1937. As mentioned in the text, the rebuilding of Waterloo Bridge required a diversion of the Subway exit after November 1937. For some time (3 years) trams ran under exposed steelwork, © London Transport Museum. [1: p392]

The Second World War meant a reprieve for the remaining tramways in London. Trolleybuses were no longer seen as the future, the decision was taken to replace the trams with motor buses. The decision was taken to close the Subway. In practice tramway closures did not happen quickly. Already worn out buses were replaced first, so tramway replacement did not start until 1950. We have looked at the twilight years of London’s tramways in an earlier post in this series. [4]

On Saturday 5th April 1952, “trams ran through the Subway for the last time. … The last car to carry passengers through the Subway in service was E/3 No. 185, some time after midnight, and in the early hours of the following morning the remaining cars from Holloway depôt were driven South through the Subway to new homes or the scrapyard.” [1: p394]

“The tracks remained unaltered, though disused, until the final abandonment of London’s tramways on 5th July, 1952, after which the street tracks were lifted in stages and those in the subway, cut at the approaches, were left as the longest section remaining in London. A technical committee was set up by the Minister of Transport to report on the possible use of the subway for motor vehicles, and tests with road vehicles were carried out both before and after closure, but the committee concluded that a satisfactory scheme would cost £1,200,000 and the Minister decided that the money could be better used in other ways. An alternative scheme to convert the subway to a car park was rejected because the cost (£175,000) was out of proportion to the benefit. In 1953, London Transport used the subway to store 120 retired buses and coaches in case they were needed for the Coronation, and in 1955 it was used to represent a railway tunnel in the film Bhowani Junction. A film company offered to take over the whole subway as a film studio, but this was rejected on account of the fire risk. Repeated questions in Parliament kept the issue alive, but in 1955 London Transport invited applications for the use of the tunnel as a store for non-flammable goods, and finally leased it in October, 1957, to S. G. Young & Co. of Blackfriars as a store for machine parts. The new tenants introduced fluorescent lighting colour-washed walls, and filled in part of the floor so as to use fork-lift trucks and pallets. After the trolleybus power supply ceased in 1959, the DC automatic pumps beneath the Strand at the lowest point of the subway were re-motored to work from the public supply.

Meanwhile, in June, 1958, the London County Council expressed interest in taking over the subway and creating an underpass for light traffic beneath the Strand and Aldwych to deal with the traffic jams which often extend right across Waterloo Bridge. This plan involved about half the subway, from Lancaster Place to Kemble Street, and received official backing, though not until April 1962, did the Minister of Transport decide to make a grant of 75 per cent towards the estimated total cost of £1,306,512. The consulting engineers were Frederick Snow & Partners, and the contract for the reconstruction, totalling £1,025,233, was awarded in July, 1962, to John Mowlem & Co, who moved in on 1st September, 1962, and promptly began their 15-month task.” [1: p395]

The new underpass opened on 21 January 1964. “It is only 17 feet (5.2 m) wide and, as a result, it is normally one-way northbound because of the side clearances required. The headroom is only 12.5 feet (3.8 m) due to the tunnel having to pass beneath [a] bridge abutment by a 1:12 gradient. An electronic ‘eye’ alerts drivers of tall vehicles and diverts them to an ‘escape route’ to the left of the entrance. However, high vehicles do still try to pass through and so get stuck occasionally.” [5]

Inside the Strand Underpass in 2007, © sixthland and used here under a Creative Commons Licence (CC BY 2.0). [6]

The underpass is a concrete box within the former tram subway, with the road surface at the original track level. At the northern end of the underpass the road rises to the surface on a new carriageway supported by metal pillars. This passes through the site of the former Aldwych tramway station; because of the greater width requirement, 27 trees and some pavement sections were removed for it to be constructed.” [5]

The tunnel was used by the 521 bus route northbound until it was withdrawn in April 2023. In 2012, the direction of traffic in the tunnel was temporarily reversed, so that it was in use by southbound traffic. This was to facilitate easier traffic flow during the 2012 Summer Olympics.” [5]

References

  1. C.S. Dunbar; London’s Tramway Subway; in Modern Tramway and Light Railway Review, Volume 26 No. 311, November 1963, p385-395.
  2. https://rogerfarnworth.com/2023/07/17/london-tramways-1950-1951-and-1952.
  3. https://amp.theguardian.com/uk-news/2021/jul/04/hidden-london-tram-station-opens-to-public-for-first-time-in-70-years-kingsway, accessed on 27th August 2023.
  4. https://rogerfarnworth.com/2023/07/17/london-tramways-1950-1951-and-1952.
  5. https://en.m.wikipedia.org/wiki/Strand_underpass, accessed on 28th August 2023.
  6. https://commons.m.wikimedia.org/wiki/File:Strand_underpass_in_2007.jpg, accessed on 28th August 2023.

London Tramways – 1950, 1951 and 1952

The featured image above shows two No. 33 trams using Kingsway Tunnel which was closed in the early 1950s, © Stories of London. [6]

Robert J. Harley begins his chapter on 1950 with these words:

The dawn of 1950 brought new hope to Londoners. It was an important psychological divide – hardship, war, destruction, austerity and the harsh winters of the 1940s seemed to belong to a more distant age. Prosperity was returning, and the advent of antibiotics, the National Health Service and new employment laws had begun to exorcise the scourges of disease and poverty which had characterised pre-war years. People could look forward to the future, and to the new showcase of British achievement, the Festival of Britain, which was due to open in 1951 on the South Bank opposite Victoria Embankment.

The trams were still running, and indeed the rumble of cars over Westminster Bridge had a deceptive air of permanence. But the reality of tramway abandonment was just round the corner, and the planners at London Transport intensified their efforts to complete the programme within the allotted timespan.” [1: p50]

January 1950 saw the closure of Thornton Heath Depot with trams diverted across Croydon to Purley Depot. Tram Scrapping sidings were laid out next to Penhall Road, Charlton and we’re in use by 12th February.

In February, London Transport (LT) heralded the arrival of 259 new buses to take the place of the first four tram routes, promising shorter queues and more comfort. The closed routes served Wandsworth, Clapham, Battersea and Vauxhall.

New Tramroads, were still being built! It was recognised that the 1951 Festival of Britain would require the diversion and improvement of tramways in the vicinity of County Hall. Harley says that:

Throughout February, the preliminary works in connection with the Festival of Britain roundabout at County Hall were continuing. It was noted that, on a bombed site between Addington Street and Westminster Bridge Road, conduit track and points were taking shape. The opportunity of witnessing the construction of new conduit tracks was not lost on many enthusiasts, and the progress on this, London’s last tramway extension, was subject to much scrutiny. Construction work of another kind had, by 14th February, lowered Wandsworth Depot’s fleet strength to a mere 36 trams.” [1: p53]

In March 1950, damage to Battersea Bridge by an errant coal barge closed the bridge to all but pedestrian use. The result was the early abandonment of that length of Route 34.

As March progressed,

speculation about proposed fare rises was never far from the surface. Public relations people at LT preferred the expression ‘fare adjustments’, but whatever the terminology, it became increasingly obvious that it would be more expensive to ride on a bus or a tram. These changes were set to start on 1st Octo- ber and included, amongst other things, the complete abolition of workmen’s fares. On 7th March, F. K. Farrell wrote: ‘The national press report that London Transport fares are to be increased next October to offset the cost of conversion from trams to buses.’

Local authorities and other organisations representing community interests were also concerned about the issue, and doubts were raised whether passengers would get a fair deal on the replacing buses. It was calculated that those who travelled to work in London would pay another £3.5 million a year for transport. On 22nd March, the TUC joined in the fight and its Special Economic Committee broached the topic of the 4.5 per cent fare rise in a meeting with Sir Stafford Cripps, the Chancellor of the Exchequer.” [1:p54]

The first batch of motormen left Wandsworth on 12th June to train as bus drivers. Those at Clapham depot soon joined them. Most ex-tram men ultimately passed muster for their new roles.

In July it was announced that the first phase of closures would happen on 1st October with a rolling programme of closures following with the last closure expected to take place in October 1952.

A temporary closure of immediately adjacent tram routes allowed the construction of a Bailey Bridge across the Thames to allow better access to the Festival of Britain site on the South Bank.

As a publicity stunt, LT invited the press to a funeral on 28th July 1950. It was actually a cremation. Car 1322 was burnt at Penhall Road. Penhall Road was known locally as the ‘Tramatorium’! Harley says: “It was calculated that almost two trams a day could be disposed of by this method. … Throughout September the tramatorium was made ready. On 6th September, cars 020, 1383, 1385, 1654 and 1762 were noted in the yard. Car 1385 was burnt on the afternoon of 26th September. On the next day, cars 1727, 1744 and accident victim 1396 appeared at Penhall Road.” [1: p57]

At the end of September fare rises were publicised. They came into effect on 1st October 1950. “In general, fare rises look moderate by modern standards; for instance ticket values below 7d went up by a halfpenny, and in the range from 7d to 1s 2d, by a penny. The real blow fell on transfer, workmen’s and return fares, which were abolished. … The last link with the old regime was severed when crews were instructed not to use the word ‘WORKMAN’ on the destination blinds.” [1: p59-60]

Late in October 1950, the new trackwork close to County Hall and St. Thomas’ Hospital was commissioned while contractors were at removing rails in the Wandsworth/Battersea areas. Harley tells that:

As an interim measure tramlines were filled with an asphalt mixture, but the conduit slot was left visible. Depending on the work load, a gang would arrive days or sometimes weeks later to cordon off one side of the carriageway so that either the up or the down track could be lifted. Many frontagers complained about the noise of pneumatic drills as they sliced into large chunks of the road surface. Granite setts were normally lifted with the old surface, but at certain locations track, conduit and setts were all buried under a new asphalt layer. Rails were generally cut up on site and then carted away by lorry to be sold as scrap metal. Pointwork which contained large amounts of recoverable steel was particularly valuable. Wood blocks were sold as logs for open fires. Well tarred, they burnt well! Wandsworth Borough Council was quoted as needing to spend £428,000 on removing 11.5 miles (18.4 km) of track and reinstating the carriageway.” [1: p61]

Late in 1950, LT began their preparations for the second round of closures due in early January 1951. “The process of abandonment had acquired a lethal momentum, and 1951 would see a substantial proportion of the remaining system swept away.” [1: p61]

The final night for routes 2, 4, 6, 8, 10, 20, 22, 24 and all night service no. 1 (between Streatham Library and Victoria Embankment) came on 6th January 1951. 101 trams in total were withdrawn and 20 miles (32km) of track removed. Routes 2 and 4 ran between Wimbledon and Victoria Embankment (via Westminster Bridge and Blackfriars Bridge respectively). Route 6 ran between Tooting and Southwark Bridge. Route 8 was a circular from Victoria Station through Clapham and Streatham.  Route 10 ran from Tooting Broadway to Southwark. Route 20 was the reverse of Route 8. Routes 22 and 24 ran from Tooting Broadway to Victoria Embankment (via Balham/Clapham and Streatham/Brixton respectively.

As the year continued, Harley tells us that February and March saw a number of minor permanent way renewals. 7th/8th April saw the next round of closures, this time in the Croydon area – Route 16 (Purley to Victoria Embankment via Westminster Bridge), Route 18 (Purley to Victoria Embankment via Blackfriars Bridge) and Route 42 (Croydon (Coombe Road) to Thornton Heath).

The Festival of Britain was opened by King George VI on 4th May 1951. Harley tells us that:

London Transport had putout much publicity for visitors, but the men- tion of tram services was only very cursory. The emphasis was now firmly on the bus side and eight special bus routes were inaugurated in connection with the Festival. It was obviously a hectic time for King George and Queen Elizabeth, because on Tuesday 8th May, the King and Queen of Denmark paid a state visit. The processional route caused some disruption to tram traffic, but trams continued to use Vauxhall Bridge Road. In order to shift the crowds afterwards, trams were despatched, fully loaded – 74 seats per car, four at a time. Also at times of street closures for state visits, cars could be turned short on the new County Hall roundabout. This was not without its dangers, as an official notice to drivers explains: ‘Several accidents have occurred recently where Addington Street, Lambeth adjoins Westminster Bridge Road. A Tram Pinch sign has recently been erected in this vicinity, but all drivers, particularly those operating tramcars, are requested to exercise special care when traversing this thoroughfare’.” [1: p80]

The next tranche of tram-route closures took place on Tuesday 10th July when Route 68 (Greenwich Church to Waterloo Station) and Route 70 (between Greenwich Church,  Bermondsey and London Bridge Station) were closed. After these closures, the system had shrunk to 65.5 route miles (104km) and 129 track miles (206km).

Harley tells us that The Star on 2nd August 1951 maintained that, “that the removal of London’s trams had given rise to more congestion, because to match the seating capacity of the trams, more buses were needed. At the same time London Transport had issued a set of figures showing the average speed of trams, including stops, to be 10.25 mph (16 kmh) – just one mile per hour short of the central bus average. [The] Modern Tramway noted that, even under adverse conditions imposed by track layout and age of the rolling stock, London’s trams still held their own in the face of LT propaganda about the alleged greater speeds of the replacing buses.” [1: p82]

Harley comments further that, “On the face of it, the conversion scheme seemed to be going well, and London Transport was in self congratulatory mood, when in the October issue of London Transport Magazine it published a leader on the half way mark of Operation Tramaway. Headed A First Class Job, it mused on the fact that 200 miles (320 km) had been abolished in a year and that everything reflected ‘the high standard of efficiency that London Transport has set for such major traffic operations’.” [1: p85] He says that there were, of course, contrary views. A letter to The Modern Tramway expressed those sentiments:

The buses on service 185 run every ten minutes in off peak periods, whereas the trams had a four minute headway … A London Transport regulator remarked that people are sometimes unable to board vehicles at midday, a state of affairs hitherto unprecedented. A tramcar, he said, acts like a dredger and eliminates the queue. . .’ It would seem from this letter that the RT and RTL type diesel buses were still lacking in their ability to transport crowds and to clear the queues.” [1: p85]

Over 1951, the number of trams operating on the network reduced from 650 at the beginning of the year to 323 by 31st December 1951. [1: p85]

On 5th January 1952, Routes 48 (between West Norwood and Southwark via Elephant & Castle), 52 (Grove Park Station to Southwark), 54 (Grove Park Station to Victoria Station), 74 (Grove Park Station to Blackfriars), 78 (West Norwood to Victoria Station) and night service 5 (between Downham and Victoria Embankment) were withdrawn with the loss of 109 trams. [1: p93]

The state funeral of King George VI took place on 15th February 1952. Later in February, “Lewisham Borough Council revealed that it was having some qualms about tram track removal. John Carr, the Lewisham Borough Engineer, was quoted as saying that it cost £10 to tear up every yard of disused double tram track. He also estimated that the council might have to pay £10,000 for the removal of tramlines in London Road, Forest Hill. Although he went on to state that payment by London Trans-port plus money from the sale of scrap steel would cover the £168,000 Lewisham was obliged to spend on track lifting in the borough, he intimated that the council was still concerned that it would be have to fund any shortfall.” [1: p95]

The entrance to Kingsway Tram Tunnel on the Embankment prior to its alterations to accommodate double-deck trams, © London Transport Museum. [8]

On Sunday 2nd March LT imposed a further fare increase. April 1952 saw the closure of the Kingsway Subway and Routes 33 (between West Norwood and Manor House Station) and 35 (between Highgate (Archway Tavern) and Forest Hill), including the 35 night service (Highgate (Archway Tavern) to Bloomsbury and Westminster).

Among others, Tram Route No. 31 ran through Kingsway Tunnel. This image shows what appears to be Tram No. 1952 stopped at the underground Holborn stop in the Tunnel. The Tunnel was first built to accommodate single-deck trams but was improved to accommodate double-deck trams by the early 1930s, © London Transport Museum. [7]

The remaining routes were lost at the beginning of July 1952. A schedule of route closures is kindly provided on yellins.co.uk/transporthistory, the table is reproduced below:

This schedule of route closures can be found on the yellins.co.uk/transporhistory website. [9]

London’s last tram week, the last full week of operation of London’s first-generation street tram system, from 29 June to 5 July 1952. Wikipedia tell us that “it was the culmination of the three-year programme, known as Operation Tramaway, that saw the replacement of south London’s entire tram network with a fleet of modern diesel buses, at a cost of £10 million. The trams had been very popular among Londoners, and in south London they accounted for the majority of local journeys by public transport. Many people regarded their demise as a particularly momentous event. On the last day of operation, large crowds gathered to see the last trams in service and to take a final ride. On arrival at its depot, the very last tram was ceremoniously received by a group of dignitaries, watched by a large number of spectators.” [2]

Many Londoners regarded the disappearance of the trams as a particularly momentous event. On the final day, the trams were crowded with passengers wanting to take a last ride, with many more people lining the routes to say goodbye to the vehicles. Souvenir hunters stripped everything that could easily be removed from the cars.” [2][3]

Crowds turned out to watch a d travel on the final trams during their last week of operation. [4]

The very last tram was car no. 1951, running on the five-mile Route 40 from Woolwich to New Cross via Charlton and Greenwich. From New Cross to Greenwich it was driven by Driver Albert Fuller. At Greenwich, the Mayor of Deptford, Mr F. J. Morris, took over the controls. And John Cliff, a former tram driver from Leeds who was now deputy chairman of London Transport, drove the car for the final leg of the route into the New Cross depot. The journey was delayed by crowds of cheering spectators (20,000 of them, according to one report) who surrounded it along its route and followed it to the depot.” [2][3][4]

Last tram week in Woolwich New Road the terminus for the Eltham routes 44 and 46. Unlike the two Cars behind it, Tramcar No. 312, an ex-West Ham Car doesn’t have room for the ‘Last Tram Week’ poster on its side panel. [9]
Another of the last trams to run on the network. This appears to be tram No. 1864 on Route 46, overcrowded and thronged by cyclists! [10]

What is, perhaps, surprising about the Wikipedia article is that it talks relatively positively about the removal of the first generation trams with little in the way of caveats. So, the article says, “The withdrawal of tram services in London was generally considered successful in reducing traffic congestion, at least in the short term. According to various press reports, traffic now flowed freely at what had previously been the worst bottlenecks. Some journeys by public transport were also noticeably faster. Lord Latham wrote, ‘The changes in traffic conditions at a number of key points are little short of dramatic.’ A decrease in road accidents was also reported.” [5: p101-103]

Our recent look at articles from editions of ‘The Modern Tramway‘ from the 1950s suggests that the benefits were far from clear, that proper statistical measurement and analysis was not respected by LT not by the press of the day, and that the costs of the transition were probably under-reported. It is also evident that, had LT chosen to invest in trams as part of postwar modernisation of transport in the capital, some considerable benefits to the urban environment would have accrued.

We have discovered, no doubt with the benefit of hindsight, that the change was a relatively ill-conceived decision based on the prevailing dogma of the times that individual freedoms were paramount and that the car was the future. It is also possible that these decisions were made by those who had little understanding of the general public’s needs and who did not depend on public transport for their daily lives.

No doubt some change was necessary and public opinion demonstrated a frustration with the trams (resulting primarily on underinvestment in the network). The conduit system may well have been a significant issue. However, most of the difficulties and objections could have been resolved with a political will to do so.

The demise of trams elsewhere in the UK could be seen as, perhaps, a greater injustice/travesty, partially in places were reserved tracks were in use.

In further articles in this series we will looked at the renamed ‘Modern Tramway‘ of the 1960s which was published jointly by Ian Allen and the Light Railway Transport League.

References

  1. Robert J. Harley; London Tramway Twilight: 1949-1952; Capital Transport Publishing; Harrow Weald, Middlesex, 2000.
  2. https://en.m.wikipedia.org/wiki/London%27s_last_tram_week, accessed on 17th July 2023.
  3. London’s Last Tram; The Times, London, 7th July 1952; https://go.gale.com/ps/anonymous?id=GALE%7CCS35999463, accessed on 17th July 2023.
  4. http://news.bbc.co.uk/onthisday/hi/dates/stories/july/6/newsid_2963000/2963092.stm, accessed on 17th July 2023.
  5. James Joyce; Operation Tramaway; Ian Allan Publishing, 1987.
  6. https://www.strandlines.london/2021/08/18/kingsways-ghost-station, accessed on 17th July 2023.
  7. https://www.ianvisits.co.uk/articles/kingsway-tram-tunnel-to-start-public-tours-in-august-45111, accessed on 17th July 2023.
  8. https://www.timeout.com/london/news/the-london-transport-museum-is-doing-an-underground-tram-tunnel-tour-030822, accessed on 17th July 2023.
  9. http://www.yellins.co.uk/transporthistory/trolley/ltw.html, accessed on 17th July 2023.
  10. https://shop.memorylane.co.uk/mirror/0100to0199-00199/tram-run-london-21484067.html, accessed on 17th July 2023.

‘The Modern Tramway’ – a quick look back at 1949 in London. ….

The featured image at the head of this article shows trams which served Route 34 in Clapham in 1949, the photographer is not recorded. [2] Route No. 34 ran from Chelsea (Kings Road) via Clapham and Camberwell Green to Blackfriars. [1: p122]

Robert Harley, in his book ‘London Tramway Twilight: 1949-1952 has chapters focussing, among other subjects on the years 1949, 1950 & 1951. [1]

In the chapter which considers 1949, [1: p32-41] Harley tells us that in May 1949, forty members of the Light Railway Transport League (LRTL) undertook a tour in Feltham car No. 2094. “It was noted that this particular car was resplendent in fresh paint and in excellent mechanical condition, having recently passed through Charlton Works. Chief Inspector Perry was ‘on the handles’, and he drove Car 2094 from Victoria to Southcroft Road. Tour participants were then transported to Purley, before returning to Victoria. The journey from Purley to Victoria was timed at 55 minutes.” [1: p36]

Harley goes on to say: “Perhaps many of the 40 members realised that an era of stability was about to end, for on 8th June space was made free in Wandsworth and Clapham depots to allow construction of garage facilities for diesel buses. This work would include filling tramway inspection pits, providing new bus docking pits, sinking fuel oil storage tanks in the ground and installing fuelling points. The old tramway traversers which were used to shift trams sideways, would also go. It was indeed the beginning of the end, and a tangible sign that progress towards the inevitable extinction of electric traction was now unstoppable.” [1: p36-37]

Harley also notes that, ‘The Modern Tramway’ for July 1949 “contained a number of details under the headline ‘London Depot Changes’. According to the correspondent, Wandsworth Depot had been converted to overhead wire and a change pit constructed at the entrance. Removal of the conduit equipment within the depot made for an easier and safer conversion. Fleet changes included seventeen cars of the 1700 series E/1 which were shifted to Clapham Depot to work route 26. Fifty-one other E/1s were transferred from Clapham to Camber- well and New Cross. The 1500 series E/1 cars were now mostly stabled at New Cross. Six E/3 cars were moved from Thornton Heath to Norwood, which also received some rehabs from New Cross. Route 34 was now worked by Camberwell Depot and was operated mainly by E/3 cars, with the odd HR/2 and E/1 taking a turn. New Cross took over route 66 from Camberwell; Norwood worked most of route 10, although Telford Avenue still supplied one Feltham for this route. Telford Avenue took over Clapham’s share of route 10 and part of the allocation of cars on routes 22 and 24.” [1: p37]

The reality was that, from its formation in 1937 by J.W. Fowler to seek the modernisation and retention of electric tramways [1: p42], the LRTL was fighting against entrenched views in London Transport (LT). “Lord Ashfield, Frank Pick, Sir Henry Maybury and the other board members were firmly convinced that the sooner they got rid of the trams there better.” [1: p42]

Although there was a genuine affection for tramways amongst many LT employees, it is safe to say that the attitude of LT, the Labour Government and the TGWU was fairly consistent. New and better road vehicles, in the form of the RT bus, would provide a flexible, more integrated service thus in this sense, the post-war abandon- ment programme was never a party political issue. It was the consensus of transport experts that trams had had their day. Arguments such as the danger of relying on imported oil and rubber found little support in the corridors of power. As for the growth of motor vehicles, it was confidently predicted that the average speed of London’s traffic would increase after the removal of the trams. Parking was not foreseen as a problem, and the use of American style parking meters was discounted as unBritish! Concerns about pollution mainly centred on burning smokeless fuels, which would ease the fog situation. The possible harmful effects of exhaust fumes from the thousand or so new buses were given the same short shrift as American parking meters.” [1: p43]

References

  1. Robert. J Harley; London Tramway Twilight: 1949-1952; Capital Transport, Harrow Weald, Middlesex, 2000.
  2. https://www.ebid.net/ca/for-sale/london-clapham-photo-of-trams-1949-photographer-issued-card-1959-182740294.htm, accessed on 7th July 2023.

The Modern Tramway – Part 9 –  More About Accidents (in London)

‘The Modern Tramway’ in March 1957 (Volume 20, No. 231) carried a follow-up article [1] to that carried by the Journal in April 1954. The original article is covered here:

The Modern Tramway – Part 5 – Trams and Road Accidents

The follow-up article in the March 1957 Journal focussed on a new Road Research Laboratory Report about London road accidents. The Modern Tramway claimed in the article that the Report went almost unnoted in the national press, unlike the Laboratory’s earlier report.

Two images of London trams, possibly both Felthams. The first on Route 48, the second on Route 54. Route 48 ran between West Norwood, Elephant & Castle and City (Southwark). Route 54, between Grove Park Station and Victoria Station. [2][3: p122]

The featured image at the top of this article is part of the Lambeth Landmark Collection (Ref: 04823, Identifier: SP160, 1951). It shows, possibly, another Feltham tram on Route 38 crossing Westminster Bridge going towards Parliament Square. The London County Hall building can be seen on the right. The Skylon of the Festival of Britain is just visible (no more than a ghostly shadow) on the left side of the tram. Route 38 ran between Abbey Wood and Victoria Embankment (via Westminster Bridge). [4][3: p122]

The new report studied the effect on accidents of resurfacing former tramway roads in the boroughs of Camberwell and Wandsworth, and the report’s conclusions were that the improvement in road surfaces reduced skidding accidents but increased some other types of accident presumably by encouraging higher speeds. The final result was a marked transfer of accident-proneness from pedal cyclists to pedestrians and motor vehicles, a 10% decrease in total accidents and a ‘non-significant increase’ in fatal and serious accidents. The Journal commented that the phrase ‘non-significant increase’ was “not intended to reduce the seriousness of the case; since fatal and serious accidents are fewer than slight accidents a far more dramatic change in the trend would be necessary to reach the point of statistical signifi- cance.” [1: p43]

Of particular significance was the additional evidence which this latest report provided that “London tramway accident figures were not typical of those for the country as a whole. The comparison is made between the period when the tracks were intact but disused (and in many cases patched, leaving only the conduit slot exposed) and the first equivalent period after complete resurfacing; it confirms that the conduit slot was probably as important a factor as the running rails in pedal cycle accidents, and since this outdated feature of the former L.C.C. system was entirely confined to London (at least in the motor age) it clearly invalidates any comparison of accident figures between London and other towns.” [1: p43] Other similar points, such as the absence of loading islands in London, were brought out in the previous article in April 1954.

The Light Railway Transport League secured an interview with the Road Research Laboratory in which evidence relating to Dundee’s experience of a conversion from trams to buses was discussed as well as the then recent report about London. The tram and bus accident figures for Dundee showed that Dundee trams ran about three times as far per fatality as Dundee buses. “The Laboratory … considered that the Dundee figures were too small for any definite conclusion to be drawn from them, and maintain their previous view that since London results in almost all other matters have been found similar to those elsewhere the same must be true of trams.” [1: p43]

Sadly, the League came to the conclusion that the Laboratory’s conclusions would only be challenged if it’s own members were able to provide statistically significant and conclusive figures relating to some of the larger city networks which allow comparisons to be made. The League suggested that two forms of comparison were possible: “one in a city such as Sheffield where modern practices (and modern surfaces) apply on a street tramway system, the other in a city such as Liverpool where a high proportion of the tramways were on reserved track.” [1: p43] The League was convinced that the many untypical features of the London tramways rendered invalid any extrapolation of London results to other towns, and that a similar study in (say) Sheffield would provide ample proof of this. Their view was tramway modernisation would have brought about a greater reduction in accidents than the replacement of trams with buses. The League asserted that figures received from Hamburg seemed to confirm this. The Deputy Director of the Laboratory agreed that such practices as coupling trams together and providing loading islands could reasonably be expected to reduce the accident rate, but the Laboratory had no figures to support this. It seems, however, that there was shared agreement on the safety value of reserved tramway tracks as a study undertaken by the City Engineer in Glasgow after the war showed accidents to be negligible. [1: p44]

References

  1. More About Accidents; in The Modern Tramway, The Light Railway Transport League, Volume 20, No. 231, p43-44.
  2. https://www.ebay.co.uk/itm/254670164078, accessed on 24th June 2023.
  3. Robert J. Harley; London Tramway Twilight: 1949-1952; Capital Transport Publishing, Harrow Weald, Middlesex, 2000.
  4. https://boroughphotos.org/lambeth/tram-westminster-bridge-lambeth, accessed on 24th June 2023.

The Modern Tramway – Part 5 – Trams and Road Accidents

The featured image shows the aftermath of one accident involving a London tramcar, © Evening Standard. [4]

Professional thinking in London in the early 1950s was that tramway modernisation would reduce road accidents. Accordingly, The Light Railway Transport League was invited to exhibit at a number of post-war Road Safety Exhibitions. [1: p59]

However, on 1st January 1954, a London Transport Executive press release carried the title ‘Tram Scrapping has reduced London accidents’. [2] This claim was based on a study “undertaken … by the Road Research Laboratory of the Department of Scientific and Industrial Research and summarised in a Report issued towards the end of [1953].” [3]

The Modern Tramway noted that the report was a serious well-intentioned piece of research into trends in London traffic accidents. It was “cautious in its approach and highly qualified in its conclusions.” [1: p59] However, the article continues, “the fact is that the parts of this Report, divorced from their contexts, which received notice in the Press appears to have given an incorrect impression, and this we point out lest students of transport fail to draw a proper distinction between the study itself and the conclusions drawn from it.” [1: p60]

This has often been a malaise which had affected public reporting of detailed technical papers. The LTE release chose to remove all qualifying statements and ignored the manifest caution in the way conclusions were expressed by the original report. It perhaps is also symptomatic of a general presumption that tramways (and also railways) were not the transport of the future. The internal combustion engine was seen as the future. At the time, this was not necessarily an unreasonable view. It has, however, been proven to be a significant miss-step in policy direction as the years have unfolded.

The original accident study considered all London accidents from 1950 to 1952, and compared the general trend of all kinds of accidents with those on ex-tram routes; only if the ex-tram route reduction was significantly greater than the more general reduction could the greater reduction be associated with tram-scrapping. So far, so good. BUT of all the accident classes surveyed, only that of ‘Accidents involving public service vehicles’ was found to have a reduction which was statistically significant, and within this class, fatal accidents actually increased, serious accidents were not reduced significantly, and the much-vaunted reduction was, in fact, limited to ‘slight accidents involving public service vehicles’. The L.T.E. handout omitted all mention of this vitally important word ‘slight’ and … gave the same statistical weight to all … classes of accident.” [1: p60]

Surely, one fatal accident is more concern to the community than fifty ‘slight’ accidents, “and the Report confirms the views of the Road Safety Organiser for Greenwich that by disciplining other traffic, London’s trams did at least keep the proportion of fatal or serious accidents well below the average for the whole country. It may well be that in this way, and by the tendency of the tram’s life- guard to reduce the proportion of fatalities in accidents, the tram has saved many valuable lives.” [1: p60]

The Modern Tramway comments that, “the over-simplification of this theme in the L.T.E. handout is the more regrettable in view of the fact that the London Transport Executive were the sole agency through which the results of the study were made public. A different body with no direct interest in the justification of tramway abandonments might have presented the results in a totally different way.” [1: p60]

Perhaps of even greater significance in that contemporary debate was the way in which the different transport authorities and borough councils had created a context in which tramway accidents were more likely to occur. “For eighteen years, every suggestion that would have reduced accidents was turned down on the excuse that the trams were to be scrapped, and dozens of urgently needed road improvement works were held up on the excuse that they must await the final abandonment; no wonder acci- dents happened.” [1: p60]

The Modern Tramway highlighted a number of issues/examples which are worthy of note:

  1. Many tram stops in South London desperately needed to be equipped with loading islands but, except in two isolated instances, nothing was done, even where the road was sufficiently wide to leave room for two lines of traffic between the island and the kerb.
  2. On 11th March 1948, Croydon Highways Committee, acting on the recommendation of their Accident Prevention Sub-Committee and with the approval of the local police, asked London Transport to lay a double tram track through the bottleneck at Crown Hill, Croydon, in place of the single track. This proposal … was rejected.
  3. As part of the general determination not to spend money on the tramways, the headlamps of London’s trams remained obscured until the end by their wartime masks. In most other towns trams would long since have been fitted with separate rear lights, and sometimes also with stop lights and indicators.
  4. The same excuse of eventual abandonment was given when complaints were made about the type of tramway paving adopted, yet when the new lines were constructed in Lambeth for the Festival of Britain it was shown that even conduit tracks could be given a surrounding surface equal to that of the best modern roads.
  5. The cars themselves, although efficient and extremely reliable vehicles, were not always maintained to the best possible standards; this is shown by the fact that in 1947 the men of Telford Avenue Depot actually staged a one-day strike to draw the attention of the public to the state of the vehicles which they were expected to drive. It is also significant that the Ministry of Transport would not allow the sale of ex-L.C.C. cars to other cities unless the braking systems were improved.

The consequences of the LTE’s shoddy approach to the dissemination of the report’s findings were also of significance. The Modern Tramway continues:

Wherever tramways are the subject of Press attacks, the London figures were triumphantly reproduced with a “We told you so” air, often omitting the fact that only accidents involving public service vehicles were concerned and thus making it appear that tramway abandonment reduced all road accidents by a third, which is sheer nonsense. Other papers such as the Yorkshire Evening News developed their own patent theories as to the probable effect of tram-scrapping in their own areas, consequently, ignoring the different conditions. We have not forgotten how this newspaper treated two accidents in Leeds on 10th December, 1953, when the fact that a tram had grazed the side of a lorry, injuring no one, was reported with headline while the case of a 12-year-old girl knocked down by a bus on the same day was relegated to a small paragraph.” [1: p61]

The Report itself extrapolated its own findings, suggesting that if the effects in other towns were the same as in London, then the replacement of all the remaining tram services in Great Britain would result in a further saving of about 1,100 accidents per year. “In fact,” says The Modern Tramway, “any tramway officer outside London would have pointed out … that this gratuitious extrapolation is quite pointless.” [1: p61]

The Modern Tramway went on to point out some of the key distinctions: [1: p61-62]

  • London tramways, for the most part, retained the outmoded conduit system of current collection, with a central slot and broken road surface. Except on the semi-reserved Embankment area lines, no one would have recommended its retention had the tramways been modernised.
  • London tramways were almost completely devoid of reserved tracks, loading islands, and other modern aids to tramway safety. Where tramways on reserved tracks were replaced by buses running on the public highway, the opposite effect has been the case, and accidents had increased.
  • The use of modern vehicles and well maintained tracks in other locations invalidates any comparison.
  • In London, motorists were permitted to overtake stationary tramcars. Elsewhere this was usually prohibited by local bye-laws.
  • In London, buses and trams shared the same road space. Elsewhere, they were kept on separate roads wherever possible.
  • London’s trams relied on a magnetic brake, elsewhere, by 1953, air brakes were in use.

Experience in Sheffield and in a number of German towns suggests that the findings of the report about London were not replicated. In those cases “accident figures had risen as a result of tramway abandonment.” [1: p62]

The Modern Tramway concludes it article with two further thoughts:

  1. Prior to the period examined by the Report, a considerable proportion of the public service vehicles involved in accidents would have been buses and coaches. The article states: “In our experience, a mixed service of buses and trams running along the same road is far more obstructive and dangerous than an equivalent service of one type of vehicle only; in these circumstances the replacement of the trams by extra buses may well result in fewer accidents, but exactly the same effect would be obtained by replacing the buses by extra trams. We understand that this is the case in Brussels, where several pre-war bus routes are now tram-worked and of 14 bus routes in 1939, only three now remain.” [1: p62]
  2. All public service assessments, “the article continues, “should be made, not on a ‘per vehicle’ basis, but on the basis of per unit service to the public. Since it is acknowledged that the replacing bus service is 5-10% less than the corresponding tram service, it follows that there are roughly 73% fewer vehicles, and each has 56 rather than 73 seats, ie., there are 29% fewer replacing seats – and it is seats, on road public service vehicles, which represent service to the public. Assuming, however, that a third of the public service vehicles operating along tram-served roads were buses, there were still 20% fewer public service seats available along ex-tram routes after the scrapping of the trams. If it further be assumed that proportionality might be the criterion for accident assessment, a decrease of 20% in accidents might be permitted before significance is attached to the type of vehicle providing the service; after all, a 20% reduction in tram service might well have produced a 20% reduction in accidents involving trams. The actual decrease in accidents was nearly 30%, so it remains to be tested whether the unexpected extra reduction of 10% was significant in the light of the total number of such accidents.” [1: p62]

In fact, performing a “chi-square” test of significance with the revised figures, in the light of the service provided, showed that any reduction in accident numbers was no longer statistically significant.

The Modern Transport article concluded firstly that London Transport and the Press made far too much of a Report in which its D.S.I.R. authors qualified their conclusions very heavily. And insisted that the observed decrease in accidents is only in ‘slight’ accidents with other accident numbers not having changed appreciably.

It seems to me that there is a salutary lesson here for us all which relates to the need to treat press reports with care particularly where those publishing press releases about those reports may have their own agenda.

References

  1. Trams and Road Accidents: A Fresh London Analysis; The Modern Tramway, Volume 17, No. 196, April 1954.
  2. Tram Scrapping Has Reduced London Accidents; LTE Press Office, G.P.N. 257, 1st January 1954.
  3. DSIR Road Research Laboratory Report R.N. 2061, October 1953. … It is worth noting that the report was not released to public scrutiny but that its substance appeared in reports within the technical press of the time.
  4. https://www.standard.co.uk/news/london/historic-london-when-trams-and-trolleybuses-ruled-the-capital-s-roads-a2923361.html, accessed on 15th June 2023.